
IVVNN-LITREV-F002-UNCLASS-111202

This Report includes data that shall not be disclosed outside the Government and shall not be duplicated, used, or disclosed
in whole or in part for any purpose other than to evaluate this Report. This restriction does not limit the right of the
Government to use information contained in this Report if it is proprietary data contained herein, if obtained from another
source without restriction. The data subject to this restriction are contained in all sheets of this Report. The proprietary data
contained herein, if disclosed to the public, would affect ISR�s competitive position in obtaining business; therefore, it is
considered to be exempt from public release under the Freedom of Information Act (5 USC §552, as amended), paragraph
(b)(4).

TOWARD RELIABLE NEURAL NETWORK SOFTWARE
FOR

THE DEVELOPMENT OF METHODOLOGIES FOR
INDEPENDENT VERIFICATION AND VALIDATION

OF NEURAL NETWORKS

IVVNN-LITREV-F002-UNCLASS-111202

Research Grant NAG5-10269

November 12, 2002

Prepared for:
National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, MD 20771

Attention:

Mr. Harold D. Coleman, Grants Officer
Mr. Nelson H. Keeler, Director, NASA IV&V

Prepared by:
Institute for Scientific Research, Inc.

320 Adams Street
P.O. Box 2720

Fairmont, WV 26555-2720
http://www.isrparc.org

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.

Approval Page

Approved By:
 Ken McGill

NASA Contracting Officer Technical Representative
 Date

Approved By:
 Christina Moats

NASA IV&V Project Manager
 Date

Approved By:
 Spiro Skias

ISR IVVNN Project Manager
 Date

Prepared By:
 Brian J. Taylor

ISR IVVNN Principal Investigator
 Date

Prepared By:
 Marjorie Darrah

ISR IVVNN Principal Investigator
 Date

Recorded By:
 Karen Tucker

ISR IVVNN Document Controller
 Date

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.

EXECUTIVE SUMMARY
Neural networks, are members of a class of software that have the potential to be
�intelligent� computational systems capable of simulating characteristics of biological
thinking and learning. Owing their origins to the study of the human brain, neural networks
possess the ability to acquire and store knowledge. They are well suited for domains of non-
linearity and high complexity that is ill-defined, unknown, or just too difficult for standard
program practices. Instead of undergoing explicit programming, neural networks adjust
themselves to fulfill the need of a desired function.
Intelligent Flight Control is a good example of a system that benefits from neural networks.
As technology enables aircraft and spacecraft to perform increasingly complex missions,
maintaining control of the crafts becomes comparably more difficult. Consequently, the next
generation of flight control systems will utilize adaptive and non-deterministic techniques to
provide for more stable and maneuverable aircraft. Neural networks will play a
progressively more important role in such systems since they can adapt in real-time to
untested flight conditions including aircraft failures, for which engineers are unable to
account.
Developers of neural networks have been cautious to extend the use of their applications into
safety-critical domains due to the complexities and uncertainties associated with these non-
deterministic software techniques. Just as biologists and neuroscientists are hard pressed to
understand how the human brain works, mathematicians and computer scientists are also
unsure as how an artificial neural network will perform as it undergoes training and
adaptation. This raises a concern from project managers and system engineers to the people
who will place their trust in these systems: How can we be sure that any system which
includes neural network technology is going to behave in a known, consistent and correct
manner?
An increased effort on the part of NASA has encouraged research in this area over the past
few years, but in general, prior to the 1990s, the study of verification and validation of neural
networks has been limited. Universities, government agencies, and a small number of
companies are working on differing aspects of this problem, but no single unifying standard
or process has been established to help those who are developing neural networks.
The purpose of this report is to summarize methods and tools that may be helpful in
developing independent verification and validation for adaptive systems to ensure that they
will behave appropriately in safety-critical and high-assurance situations.
Because of the emerging nature of this field, the amount of published material relating solely
to the methods and tools that have been used on neural networks in the past is small. In an
effort to look for insight, this report also includes summaries of additional methods and tools
in related areas that might be adaptable to the independent verification and validation of
neural networks (IVVNN).
The information within this document was obtained during an extensive literature survey
conducted during a four-month period ending in September 2002. This information base
included published research papers (both journal and conference), technical reports, slide
presentations, and project and tool documentation. The majority of all material is publicly
available through the World Wide Web, a significant part available directly from the authors.
In some cases, tool or method developers have been contacted for additional information.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.

This report first presents a brief background of neural networks and how verification and
validation relates to these software systems. It then describes several soft computing systems
(though not necessarily neural networks) that illustrate how traditional V&V techniques were
used, and how new tools were developed to test nontraditional forms of software. Perhaps
the most significant part of this report is the summary of methods. V&V methods that may
prove helpful to IVVNN are presented, including rule extraction, model checking,
Lyapunov�s Direct Method, run-time monitoring, cross validation, improvements in system
testing, and visualization. The last section covers potentially useful IVVNN tools. Eighteen
tools are described which have been used or developed for adaptive systems review; tool
information such as expense, ease of use, automation, available support, and history of
performance is presented so that the reader can gain a better understanding of a tool�s value.
The paper concludes with the anticipated direction of the ISR future efforts on this project.
Although the ISR has identified many tools and methods that aid in the V&V of software
systems in general, the team found few that are built for, or applicable to, adaptive systems or
neural networks in particular. Of those found, many are still immature techniques that have
not been widely used or tested on complex systems. From this literature review, it appears,
preliminarily, that the most promising of the methods and tools for V&V of dynamic
adaptive neural networks include testing for fixed nonadaptive neural networks and
employing an operational monitor. Techniques for formal analysis of artificial neural
networks, before, during, and after learning, are probably several years away from proving
their effectiveness.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
i

TABLE OF CONTENTS

1.0 INTRODUCTION...1

2.0 BACKGROUND...3

2.1 Historical Highlights of Neural Network Development 3

2.2 History of V&V ... 6

2.3 Timeline ... 8

2.4 Major Contributors .. 8

3.0 LITERATURE SURVEY.. 10

3.1 A Summary of Projects .. 10
3.1.1 Deep Space Exploration - Remote Agent (RA).. 10
3.1.2 Intelligent Aircraft .. 12
3.1.3 Other Safety-Related Neural Network Projects.. 15

3.2 Summary of Methods ... 17
3.2.1 Testing... 19
3.2.2 Run-Time Monitoring... 23
3.2.3 Lyapunov Stability Analysis... 25
3.2.4 Rule Extraction ... 26
3.2.5 Cross Validation.. 37
3.2.6 Visualization ... 39
3.2.7 Model Checking.. 46

3.3 Summary of Tools ... 48
3.3.1 HyTech.. 48
3.3.2 Java PathExplorer (JPAX)... 49
3.3.3 Java PathFinder (JPF) and Java PathFinder 2 (JPF2) ... 52
3.3.4 KRONOS .. 54
3.3.5 LOTOS.. 55
3.3.6 MATLAB NN Toolbox .. 57
3.3.7 Murphi � or Murϕ ... 59
3.3.8 PARAGON ... 60
3.3.9 PAX... 61
3.3.10 Planview/Comview... 63
3.3.11 PVS ... 67
3.3.12 Real-Time Software Testing Tool Suite ... 69
3.3.13 RULEX ... 71
3.3.14 SMV/NuSMV ... 74
3.3.15 SPIN.. 76
3.3.16 STeP.. 77
3.3.17 UPPAAL... 79
3.3.18 WVU F-15 Simulation.. 82

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
ii

4.0 EVALUATION OF TOOLS.. 86

5.0 CONCLUSION ... 89

5.1 Method Review.. 89

5.2 Tool Review ... 90

5.3 Summation... 90

6.0 FUTURE RESEARCH... 91

6.1 Research on Human Factor Analysis Based on Pilot Certification.................. 91

6.2 Improvements on Existing Processes .. 91
6.2.1 Formal Methods .. 91
6.2.2 Run-Time Monitoring Methods.. 93
6.2.3 Testing Methods.. 94
6.2.4 Visualization Methods .. 94

6.3 Tying It All Together .. 94

7.0 REFERENCES ... 95

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
iii

LIST OF TABLES
TABLE 3-1. SUMMARY OF THE FIDELITY LEVELS INTRODUCED.. 23
TABLE 3-2. RULE EXTRACTION CLASSIFICATIONS.. 28
TABLE 3-3. SUBSET ALGORITHM.. 30
TABLE 3-4. M-OF-N ALGORITHM... 31
TABLE 3-5. CONJUNCTIVE RULE EXTRACTION ALGORITHM... 35
TABLE 3-6. M-OF-N RULE EXTRACTION ALGORITHM.. 36
TABLE 3-7. FOUR TYPES OF DIVERSITY FOR ANNS... 37
TABLE 3-8. SELECTED VISUALIZATION TECHNIQUES.. 39
TABLE 3-9. MAIN LOTOS OPERATORS .. 56
TABLE 3-10. RECORD- AND REPLAY- INSTRUMENTATION EXAMPLES 71

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
iv

LIST OF FIGURES
FIGURE 2-1. TIMELINE OF IMPORTANT NN EVENTS ... 3
FIGURE 2-2. DIAGRAM OF A BIOLOGICAL NEURON... 4
FIGURE 2-3. V&V LITERATURE TIMELINE ... 8
FIGURE 3-1. NASA F-15 ACTIVE AIRCRAFT... 13
FIGURE 3-2. SFDIA DIAGRAM ... 15
FIGURE 3-3. KINGSNORTH POWER STATION ... 16
FIGURE 3-4. DEVELOPMENTAL ELECTRONIC NOSE AT PNL .. 17
FIGURE 3-5. APPLICABILITY OF METHODS FOR NN VERIFICATION AND VALIDATION............ 18
FIGURE 3-6. NESTED LOOP MODEL OF RODVOLD�S TESTING PHASE...................................... 19
FIGURE 3-7. DIAGRAM OF THE TRAJECTORY GENERATOR.. 20
FIGURE 3-8. EXAMPLE OF TRAJECTORY CLUSTERS .. 21
FIGURE 3-9. NEW TRAJECTORIES FROM PERTURBATION .. 22
FIGURE 3-10. DATA SNIFFING IN AN ADAPTIVE SYSTEM.. 24
FIGURE 3-11. DESCRIPTION OF POS-ATT AND NEG-ATT... 29
 FIGURE 3-12. VIA FOR A SINGLE NEURON .. 33
FIGURE 3-13. NEURAL NETWORK AND RELATED HINTON DIAGRAM 40
FIGURE 3-14. BOND DIAGRAM ... 41
FIGURE 3-15. HYPERPLANE DIAGRAM.. 41
FIGURE 3-16. SAMPLE SCREEN FROM HYPERPLANE ANIMATOR... 42
FIGURE 3-17. TRAJECTORY DIAGRAM .. 43
FIGURE 3-18. HIERARCHICAL STRUCTURE OF CUP DOMAIN THEORY 44
FIGURE 3-19. LASCAUX DEPICTION OF A KNOWLEDGE-BASED NEURAL NETWORK 45
FIGURE 3-20. ACTIVATION SIGNALS AND EFFECTIVE ACTIVATION FUNCTIONS 45
FIGURE 3-21. JPAX ARCHITECTURE... 51
FIGURE 3-22. EXAMPLE NN IN MATLAB ... 58
FIGURE 3-23. EXAMPLE NN IN SIMULINK .. 59
FIGURE 3-24. THE PARAGON TOOLSET... 61
FIGURE 3-25. THE COMVIEW TOOL .. 64
FIGURE 3-26. A HIERARCHICAL VIEW.. 64
FIGURE 3-27. THE PLANVIEW TOOL ... 66
FIGURE 3-28. PVS SCREEN SHOT... 68
FIGURE 3-29. LANGUAGE CONSTRUCT CLASSIFIED AND SCOPE ANALYZED ABSTRACT

SYNTAX TREE .. 70
FIGURE 3-30. A 2D RIDGE REPRESENTATIVE OF THE RESPONSE AREA OF AN LRU............... 72
FIGURE 3-31. A 3D RIDGE REPRESENTATIVE OF THE RESPONSIVE AREA OF AN LRU 72
FIGURE 3-32. SMV INPUT FILE THAT MODELS 3-BIT BINARY COUNTER CIRCUIT 75
FIGURE 3-33. SMV OUTPUT SCREENSHOT AFTER EXECUTING SAMPLE MODEL 75
FIGURE 3-34. THE STEP SYSTEM STRUCTURE.. 78
FIGURE 3-35. THE STEP USER INTERFACE ... 79
FIGURE 3-36. UPPAAL2K ON SCREEN. .. 81
FIGURE 3-37. THE WVU F-15 SIMULATION... 83
FIGURE 3-38. WVU MENUS... 84

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
1

1.0 INTRODUCTION
This document summarizes the literature survey performed for NASA Goddard Space Flight
Center by the Institute for Scientific Research, Inc. (ISR) under the NASA IV&V Center�s
funded initiative �Development of Methodologies for the Independent Verification and
Validation of Neural Networks.�
This initiative is the first step toward the goal of developing a new and effective
methodology for assessing the artificial intelligence that is increasingly being utilized for
space missions as well as commercial, medical, and industrial uses. The overall goal has
been separated into six tasks. The first task objectives were to identify, collect, and digest
available material related to the verification and validation of neural networks (NNs). This
document represents the results achieved from completion of that task.
Independent verification and validation (IV&V) of NN software is of vital importance as the
applications for NNs become more feasible and prevalent. Some of the most promising
applications of this artificially intelligent technology are in safety-critical situations where
NNs can process data and react much faster than a human. One such project is the Intelligent
Flight Control (IFC) Program for NASA�s F-15 research jet, a project in which the ISR is a
partner.
An NN�s greatest strength � its adaptability � also creates its greatest challenge: how to
assure that its judgment and decisions are sound. This software must be scrutinized to ensure
it will perform as expected in every situation. The challenge is that the NN may be adaptive
and may encounter unforeseen situations in the field resulting in unpredictable responses.
Addressing this challenge will require new methods or adaptations of existing methods.
The goal of the Independent Verification and Validation of Neural Networks (IVVNN)
project is to develop a new methodology. This methodology will incorporate the state of the
art practices from top researchers in the field. The ISR will apply this new methodology to
the NN software used by the IFC project as a proof of concept.
This project focuses on a very specific type of artificial intelligence system: artificial NNs.
To clearly understand the goal of developing V&V methods for artificial NNs, it is necessary
to define several key terms and concepts.

• An artificial neural network, or simply neural network, is a computer system that
attempts to mimic the way a human brain processes and stores information. It works
by creating connections between mathematical processing elements, called neurons.
Knowledge is encoded into the network through the strength of the connections
between different neurons, called weights, and by creating groups, or layers, of
neurons that work in parallel. The system learns through a process of determining the
number of neurons or nodes and adjusting the weights for the connections based upon
training data. In supervised learning, the training data is composed of input-output
pairs. An NN tries to find a function which, when given the inputs, produces the
outputs. Through repeated application of training data, the network then
approximates a function for that input domain.
This report considers two types of NNs:
! Fixed, Non-Adaptive Neural Networks: Sometimes referred to as a Pre-Trained

Neural Network (PTNN), a fixed NN is one that has undergone training and then

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
2

becomes set. The internal structure of the network remains unchanged during
operation. After training is complete, all weights, connections, and node
configurations remain the same, and the network reduces to a repeatable function.
A common use of a fixed NN might be a classification system to identify
malformed products on a manufacturing line where the definition of an
undesirable characteristic would not change and the network would be expected
to perform the same classification repeatedly.

! Dynamic, Adaptive Neural Networks: Sometimes referred to as an Online
Learning Neural Network (OLNN), this type of network is never fixed, so the
system continues to develop throughout its life. An OLNN is continuously
adapting to current data, changing its internal structure of neurons and weights.
OLNNs are employed in situations where a system learns while in use. This is
useful where unforeseen scenarios occur, such as aircraft failures, or when input
domains change over time, such as stock market analysis.

• Non-determinism refers to a property of a computation that may have more than one
result. With a deterministic system, logic paths are unchanging: assuming the system
is in State S, given Input A, the result is predictably Output B. With non-
deterministic systems, the result at different times may be Output B, C, or something
else. The result is affected by factors that may not be readily visible to the outside.
Neural networks that adapt can be considered non-deterministic because their outputs
evolve as learning progresses.

• Autonomous means self-controlled or self-directed. Autonomous systems have some
onboard intelligence as well as standalone operation and communication capabilities.
Neural network structures may, or may not, be part of an autonomous system.

For this summary, the ISR collected and organized more than 300 artifacts concerning NNs
and related technologies. These included NASA reports, journal articles, conference papers,
presentations, software tools related to the V&V of adaptive systems, abstracts, and assorted
literature, which is freely available on the World Wide Web. A process for consideration and
digestion of the artifacts was put into place with the following steps:

• Relevance classification
• Artifact indexing
• Summary and review
• Internal presentation and discussion

Because many of these artifacts had only partial relevance to the verification and validation
of NNs, they were sorted into relevant and irrelevant categories. Relevant documents were
further refined into background and non-background material. Then, relevant artifacts were
indexed based upon keywords, category classification, author(s), and other related
information, which allowed for some obvious clustering of document groups, such as rule
extraction and model checking.
Once indexed, articles were then reviewed and analyzed by members of the ISR project team.
Team members created technical summaries, reviews, and critiques of the artifacts. An open
discussion on the merits of the artifacts furthered the goal of methodology development.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
3

A list of authors was created as a resource for identifying research activities for future
reference. These authors have been contacted about the project and have been invited to
contribute their latest research findings. The ISR team has also developed a list of all
government agencies, private institutions, and academic institutions that perform research in
this area.
From the �fishnet� collection approach, document summaries, and author, organization, and
university tracking, the organization of this report emerged.
This report begins with background information, including a brief history of NNs, and of
verification and validation and how it relates to these soft computing technologies. Next, a
timeline of research is presented, as well as an overview of the major contributors to this and
related fields. NASA projects that incorporate autonomous or adaptive software in their
design are described, followed by methods and tools that may be used to validate and verify
these types of software. A summary table is provided that evaluates the tools and their
usefulness toward the goal of performing IVVNN. The document then concludes by offering
an approach to unite these methods into an IVVNN practice.

2.0 BACKGROUND
This section offers a brief overview of verification, validation, and NNs. These overviews
should not be considered an in depth explanation, but instead a general discussion on each
topic to provide background to the methods and tools presented in the next section of this
report.

2.1 Historical Highlights of Neural Network Development
This section presents a brief historical summary of major events in the development of NN
technology (Figure 2-1) and sets the stage for further consideration of the current state of
verification and validation of NNs.

Figure 2-1. Timeline of Important NN Events

Artificial NNs are a mathematical simulation of biological NNs, like the human brain. The
basic component of the brain, the neuron, was discovered in 1836. Its structure is depicted in
Figure 2-2. In addition to a nucleus, the neuron cell has two specialized appendages:
dendrites, which receive impulses from other neurons, and an axon to carry signals to other
neurons. The gap between dendrites and axons is called a synapse.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
4

Figure 2-2. Diagram of a Biological Neuron

Functionally, the neuron acts as a multi-input/single-output unit. A single neuron can have
several neighbors connect to it and bring in electrical signals across the synapses and through
the dendrites while it alone can connect to one other neuron via the axon. Within the brain,
all of the neurons connect to one other via, and work together in, what can be considered a
network of neural cells.
The neuron performs a summation of the electrical signals arriving at its dendrites. This
summation is compared against a threshold to determine if the neuron shall excite (referred to
as firing), resulting in a generation of a signal to the dendrite of another neuron. In 1897, the
input signals into a neuron were found to be subject to attenuation in the synapses, meaning
the synapses helped to control the strength of the electrical signal passed into the neuron.
The modern era of NN research and development began with the classic work of W.S.
McCulloch, a psychiatrist and neuroanatomist, and W. Pitts, a mathematical prodigy,
associated with the University of Chicago. With their classic 1943 paper, �A Logical
Calculus of the Ideas Immanent in Nervous Activity,� they united the fields of
neurophysiology and mathematical logic [McCulloch 1943]. In particular, they showed that
a model of a biological NN could, in principle, calculate any computable function.
In 1949, Donald Hebb, a psychologist at McGill University in Canada, published a novel
postulate of neural learning: the effectiveness of a synapse to transfer a signal between two
neurons is increased by repeated activation across that synapse [Hebb 1949]. This theory,
also known as �Hebb�s Rule,� explained the physiological concept of synaptic modification,
the increase or decrease of a neuron�s response to electrical stimulus. This corresponds to the
use of weighted connections between the neurons of an artificial NN and gave rise to the use
of techniques in adjusting these weights during learning.
Hebb�s work influenced Marvin Minsky, who would later go on to found the MIT Artificial
Intelligence Laboratory in 1959. While a student at Princeton in 1954, Minsky developed his
thesis on �Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain-
Model Problem� [Minsky 1954]. Minsky�s book Computation: Finite and Infinite Machines
[Minsky 1967] extended the 1943 results of McCulloch and Pitts by explaining them in the
context of automata theory and the theory of computation.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
5

During this same period, Frank Rosenblatt introduced as a new approach to pattern
recognition, the perceptron, culminating in his perceptron convergence theorem
[Rosenblatt 1960]. The perceptron represented a significant step over previous attempts at
artificial NNs because it introduced the idea of auto-learning frequently occurring patterns. In
the same year, Bernard Widrow and Marcian Hoff introduced the least mean-square
algorithm and formulated the ADaptive LINear Element (ADALINE) [Widrow 1960]. The
ADALINE network used weighting on the inputs into a neuron for pattern classification; it
also could take continuous data instead of the predominantly binary inputs used by other
networks, including the perceptron.
But even with these new emerging network architectures, the research field was about to
collapse. In their book Perceptrons [Minsky 1969], Minsky and Seymour Papert
mathematically demonstrated some fundamental limitations on single-layer networks like the
perceptron. They also expressed their doubt that multi-layer versions could overcome them.
These limitations deflated the hype surrounding the great potential of NN technology and led
to the decline of continued funding for NN research across the next couple decades (i.e. the
�Dark Ages� in Figure 2-1).
Even though interest in NNs waned, there were several researchers still working actively in
the field. In the 1970s, von der Malsburg [von der Malsburg 1973] introduced the Self-
Organizing Map (SOM). Later, with D.J. Willshaw [Willshaw 1976], he further developed
an association of SOMs with topologically ordered maps in the brain. Then in 1980,
Grossberg built upon this with a new principle of self-organization known as adaptive
resonance theory (ART), which basically involves a bottom-up recognition layer and a top-
down generative layer [Grossburg 1980]. Later, in 1982, Tuevo Kohonen introduced the
development of SOMs based on one- or two-dimensional lattice structures [Kohonen 1982].
In 1982, J.J. Hopfield introduced the use of an energy function in formulating a new way of
understanding the computation performed by recurrent networks with symmetric synaptic
connections [Hopfield 1982]. This new perspective, based on energy principles, resulted in
attracted many researchers from other scientific disciplines, such as physics, to explore and
contribute to the field of NNs. The Hopfield paper also was the first to explicitly make the
case for storing information in dynamically stable networks.
In 1983, Kirkpatrick, Gelatt, and Vecchi [Kirkpatrick 1983] introduced a new principle for
solving combinatorial optimization problems called simulated annealing, which is rooted in
statistical mechanics. Building upon this approach, Ackley, Hinton, and Sejnowski
[Ackley 1985] developed a stochastic machine known as the Boltzmann machine, which was
the first successful realization of a multilayer NN. This work with the Boltzmann machine
provided the foundation for the linking of NNs to belief networks [Pearl 1988] and, in
particular, for the development of sigmoid belief networks by Neal [Neal 1992].
In 1986, D.E. Rumelhart and J.L.McClellan, in their monumental two-volume work Parallel
Distributed Processing: Explorations in the Microstructure of Cognition [Rumelhart 1986],
introduced the backpropagation algorithm, which has emerged as the most widely-used
learning algorithm for training multilayer perceptrons.
In 1988, D.S. Broomhead and D. Lowe introduced an alternative to multilayer perceptrons
with their layered feed forward networks based on radial basis functions (RBF). This work

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
6

has led to significant efforts to link the design of NNs to the areas of numerical analysis
methods and linear adaptive filters [Broomhead 1988].
For a more comprehensive historical analysis of significant achievements in the field of NNs,
the reader is referred to the �Historical Notes� section at the end of Chapter 1 in Simon
Haykin�s Neural Networks: A Comprehensive Foundation [Haykin 1999].

2.2 History of V&V
Before software finds its way into safety-critical applications, users of these systems must be
assured of highly reliable operation. In non-critical systems, failure may result in loss of
work, profits, or mere inconvenience. In systems where high reliability is a requirement,
failures can result in massive destruction or loss of human life.
One industry with a high reliability/low failure requirement is aviation. Civilian airliners
require highly reliable systems to transport millions of passengers daily. The Federal
Aviation Administration, the ruling authority in the U.S., has mandated a failure rate of less
than 10-9/hour as the acceptable occurrence of failures within aircraft systems. This means
that for every billion hours (roughly 114,000 years) of operation, only one failure should ever
occur.
Other industries with high demand for reliability have adopted similar guidelines for
acceptable failure rates. Requirements for monitoring systems for nuclear power plants are
10-4 failures per hour of operation. The telephone industry commonly cites a limit of 10-5
failures per hour. (Customers expect flawless operation from their telephone service
provider, so the failure rate is set even higher than the nuclear power industry guidelines.)
Phone service should not be interrupted more than two minutes per year, though experience
says this is difficult to achieve.
One way to assess the correctness and reliability of a software project is to utilize the
practices of verification and validation. V&V methods attempt to answer two questions
concerning the entire software lifecycle of a project:

Verification: Is the product being built right?
Validation: Is the right product being built?

Verification looks at the end result of the software development process and evaluates the
correctness of the software. It seeks to answer questions concerning the adequacy of the
processes that went into the system development. Verification also analyzes the outcome of
tests conducted on the system that result in metrics that measure the system�s expected
reliability.
Validation examines the system from a different perspective. Given the original intended
uses and needs for the system, and all of the changes and modifications made to those
specifications during the software development, does the end product still fulfill those
requirements? Validation seeks to ensure that all requirements are met throughout the
development of the system. These can include statements on system reliability, failure rates,
and other issues important in safety-critical systems.
The software lifecycle can be separated into several stages: concept, requirements, design,
implementation, testing, operation, and maintenance. Perhaps due to the visibility of the
results from testing, a common misconception is that V&V occurs only during the testing

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
7

stage. Verification and validation should occur within each stage of the lifecycle. For V&V
to be adequate in any kind of system development, each stage must contain its own assurance
practices.
The Institute of Electrical and Electronics Engineers published IEEE Standard 1012-1998
(and 1012a-1998) to provide a V&V template for software developers. The IEEE Standard
for Software Verification and Validation can be used across all processes, activities, and
tasks of the software life cycle. The standard identifies key activities that can be conducted
within each stage, such as documentation and assessments of risks, hazards, and
requirements traceability from stage to stage.
Current V&V techniques, including those described within the IEEE standard, are not well
equipped to handle non-deterministic systems like NNs. The use of NNs, especially within
safety-critical systems, has been increasing over the past 15 years because they prove very
useful in systems that contain ill-defined non-linear functions.
Instead of being programmed and designed in a traditional sense, NNs are �taught� using a
learning algorithm and a set of training data. Because of the non-deterministic result of the
adaptation, the NN is considered a �black box.� Its response may not be predictable or well
defined within all regions of the input space.
Of particular concern is the trustworthiness and acceptability of dynamic NNs that continue
to adapt or evolve after the system is deployed. While some OLNNs may be given a priori
knowledge of their input domain, the adaptation that they undergo offers no guarantee that
the system is stable or continues to meet the original objectives.
The V&V technique commonly applied to NNs is brute force testing. This is accomplished
by the repeated application of training data, followed by an application of testing data to
determine whether the NN is acceptable. Some systems may undergo intensive simulations
at the component level, and perhaps at the system level as well. However, these may be no
better than �best guesses� toward a system analysis.
In assessing a safety-critical NN system, a V&V expert must know what to look for with an
NN and how to analyze the results. Many questions face the analyst regarding the network�s
implementation:

• Has the network learned the correct data, or has it learned something else that
correlates closely to the data?

• Has the network converged to the global minimum or a local minimum?
• How will the network handle situations when data is presented to it outside of the

training set or unique from previous training data?
• Is there a quantifiable metric to describe the network�s �memory� or data retention?
• Is the network making use of the right set of input parameters for the problem

domain?
One oft-cited story [Skapura 1996] recounts an NN pattern recognition system that was being
developed for the army to identify the presence of enemy tanks. Once trained, the system
appeared to work perfectly, able to identify tanks in the testing samples and in a completely
separate data set. When taken to the field, however, the system failed. After analysis, it was
discovered that the system was actually identifying qualities of the pictures it was being

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
8

presented with: every photo in the test set that had a tank hidden within it was taken on a
cloudy day; coincidentally, every photo without a tank was taken on a clear day. The system
had learned to identify cloudy skies and not tanks. This bias had been undetected.
It is stories like this that push the software industry to establish V&V for NN processes. As
the development of NNs is often considered more of an art form than a science, so too might
it be said about V&V of NNs. Like the IEEE standard, developers need well-defined
practices that they can use in their own systems.

2.3 Timeline
The timeline in Figure 2-3 depicts the number of artifacts collected for the different
publication years. The artifacts included were relevant towards the development of the
methodology for V&V of NNs and consist of articles that pertain to verification and
validation of autonomous, adaptive, and non-deterministic systems, as well as NNs. The
graph indicates an increase in research publications in this area.

Figure 2-3. V&V Literature Timeline

2.4 Major Contributors
The field of artificial NNs is rapidly evolving. The breadth of problem domains to which
they are being applied has expanded considerably in the last few years�including fields as
diverse as real-time control systems to general data mining applications, to business
predictions, and medical diagnosis. Some programs have potential for a fairly high-level
impact in their target industry. In particular, the ISR�s own IFC effort could result in
significant new opportunities for the application of NN technology within mission-critical
arenas such as the aeronautical industry.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
9

Increasingly, the need is being recognized�by such organizations as NASA and the Federal
Highway Administration (FHA)�that the supporting systems design function of V&V must
be brought to bear for these NN-based systems to gain the necessary acceptance within their
respective problem domains.
While many researchers are working in the areas of NN-based systems and general V&V, the
number of people, institutions, etc. working in the intersection of these two areas is relatively
small. The following paragraphs identify some of the more prominent members of this select
group.
NASA is well represented�both directly and indirectly�within this group. Dr. Tim
Menzies in the dual role of Software Engineer Research Chair NASA IV&V, and Research
Associate Lecturer, Department of Computer Science and Electrical Engineering at West
Virginia University, and Dr. Bojan N. Cukic who is an Assistant Professor at West Virginia
University, are actively involved in research efforts that impinge upon the V&V of NN-based
systems. Charles Pecheur from Research Institute for Advanced Computer Science (RIACS),
the Automated Software Engineering Group, and Stacy Nelson, Technology Transfer
Consultant, both with NASA Ames Research Center, are also actively involved in R&D
relevant to this area of research. Other government agencies, in addition to NASA, have also
shown interest in the V&V of NN-based systems.
Larry Medsker, Associate Dean, College of Arts & Sciences & Professor of Physics, The
American University, and Rodger Knaus, Principal Investigator at Instant Recall, Inc.
(http://www.irecall.com/rkres.htm) in Washington, D.C., have been involved in related
efforts for the Federal Highway Administration (FHWA) [Knaus 1998], and are now
currently preparing the FHWA Highway Software Verification and Validation Handbook on
an Instant Recall contract with FHWA.
Several corporate entities are involved in the development of NN-based systems, in general,
and for the aeronautical industry, in particular. Accurate Automation Corporation
(http://www.accurate-automation.com/) of Chattanooga, TN, and Barron Associates, Inc.
(http://www.barron-associates.com/oldsite/index.html) of Charlottesville, VA are two of
these. Accurate Automation Corporation (AAC) is a R&D firm specializing in the design
and implementation of advanced aircraft technologies. AAC also applies intelligent
computing technologies to complex control and signal processing problems in applications
such as avionics, robotics, and image processing. AAC�s commercial products include the
Neural Network Processor (NNP) and Neural Network Tools (NNT). NNP is a high-speed,
low-cost processor capable of running complex NNs in real time.
Barron Associates, Inc. (BAI) has incorporated its neural modeling algorithms into an
advanced commercial product, GNOSIS, that trains and evaluates artificial NNs for
modeling, prediction, estimation, control, and classification purposes. Three particular
applications are in the development of 1) an NN-based guidance control for a surface-to-air
missile system, 2) on-line adaptive networks for aircraft control, and 3) the verification and
validation of fixed-structure NNs for flight critical systems.
In addition to these specialized instances of NN-based systems for aeronautical applications,
there are several universities, in addition to WVU, that have significant programs that, while
not an exact match, nevertheless, are relevant to the topic of this paper. One such program is
led by Reid Simmons [Clarke 2001], Senior Research Computer Scientist at the Robotics

http://www.irecall.com/rkres.htm
http://www.accurate-automation.com/
http://www.barron-associates.com/oldsite/index.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
10

Institute of Carnegie Mellon University, is investigating the application of formal methods to
the verification of autonomous systems.
Other groups as far away as Australia also are actively investigating topics relevant to the
V&V of NN-based systems. For example, the Advanced Computing Research Centre
(ACRC) (http://www.acrc.unisa.edu.au/), School of Computer & Information Science,
University of South Australia has two particularly relevant programs:

• Neural Computation in a Reconfigurable Computing Environment, investigating
the feasibility of implementing NNs with on-chip learning and making contributions
on the best reconfiguration strategies for FPGAs to facilitate real-time adaptation.

• Evaluation of Artificial Neural Networks, developing new techniques for the cross-
validation of artificial NN classifiers.

3.0 LITERATURE SURVEY
The literature survey comprised over three hundred documents, which included publications
from conferences, journals, magazines, books, tool and tool documentation and slide
presentations. The following sections outline some of the more significant items that were
reviewed. The projects section looks at previous programs that made use of NNs and related
technology. The methods section highlights seven of the most promising avenues of NN
V&V research. The final section investigates currently available tools, some of which deal
directly with NNs and others that might be developed further to work with NNs.

3.1 A Summary of Projects
The number of publicly-documented projects that made use of NNs in safety-critical systems
appears to be rather small. This emphasizes the fact that these non-deterministic systems
lack credibility and confidence and thus far remain untrustworthy for high assurance and
high-reliability missions.
Since NNs fall under the classification of non-deterministic systems, there may be potential
benefits from examining similar non-deterministic projects such as the Remote Agent (RA)
to see if any lessons learned can be extrapolated for NNs. Other projects, such as those
found in environmental and medical industries, offer no more discussion on the assessment
of NNs beyond repeated network testing. The strongest avenues of NN verification and
validation may be those associated with intelligent aircraft. Several of these programs,
including the two discussed here, have been ongoing for well over five years and at different
points in each program�s life cycle, different V&V techniques have been examined.

3.1.1 Deep Space Exploration - Remote Agent (RA)
The RA was the first on-board artificial intelligence system to control an in-flight spacecraft.
The control system was created for the launch of Deep Space One, the first flight of NASA�s
New Millennium program. One of the objectives of the New Millennium program was to
increase spacecraft autonomy toward mission-level planning and autonomous health
monitoring and recovery. The RA flew the spacecraft between May 17 and May 21, 1999
[Nelson 2002].
Developed by NASA�s Ames Research Center (ARC) and Jet Propulsion Laboratory, the RA
offered new challenges in design. Because resources on a spacecraft are limited, all activities

http://www.acrc.unisa.edu.au/

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
11

must be carefully budgeted. The control system must be able to coordinate among multiple
activities that may include precise real-time constraints (such as performing an activity at a
specific time or event), less-restrictive tasks, and unplanned events. Consequently, such a
system must be able to recognize goals and priorities and select, among multiple path
options, an optimum path to meet those goals. It must also be able to recognize existing and
pending problems and anticipate events. Furthermore, it must be able to do this with limited
CPU resources. The resulting product, the RA, was a complex and concurrent software
system that employed several automated reasoning engines.
The RA was designed with three layers: a set of core services that comprise a robust
operating system, a set of engine modules including a plan runner, and a set of
mission-specific task programs. This resulted in three distinct segments: a Planner and
Scheduler (PS), a Mode Identification and Recovery (MIR) subsystem, and a Remote Agent
eXecutive (RAX).
The PS generated the plans that were implemented by the RA to control the spacecraft. It
decomposed goals into task-nets and sequenced the tasks based on precedence and resource
constraints. The PS utilized Heuristic Scheduling Testbed System (HSTS) technology, a
complex system that elicits and automatically manipulates system level constraints
[Nelson 2001]. Items of interest to V&V include tokens, compatibilities, Domain
Description Language (DDL), plan model, and plan. Tokens represent intervals of time over
which a variable is in a certain state. Compatibilities represent temporal constraints that may
involve durations between tokens. DDL is the object-oriented language used for specifying
plan models. A plan model is the description of the domain provided in terms of objects and
constraints. A plan is �a complete assignment of tokens for all state variables that satisfy all
compatibilities, ranges of duration and disjunction of constraints.� Formal V&V conducted
on HSTS at NASA ARC�s Autonomy Group has used the UPPAAL, a modeling, simulation,
and verification tool for real-time systems. UPPAAL can represent time and, like HSTS, is a
constraint-based system.
The MIR is the model-based health monitoring system (also known as Livingstone)
developed at NASA ARC. The Mode Identification module tracks issued commands to
estimate the current state of the system; if it varies from the observations from sensors, then
it performs diagnosis by searching for the most likely set of component mode assignments
consistent with observations. The Mode Recover module then computes a recovery path
[Nelson 2001].
The MIR uses a qualitative model of equipment to infer state and diagnose conditions. It
observes the RAX, receives state information from the spacecraft, and uses model-based
inference to evaluate the state of the craft and to provide feedback to the RAX.
The RAX is the goal-oriented mechanism of the system written in Executive Sequencing
Language, an extension of Lisp. It utilizes a concurrent, distributed software architecture that
coordinates actions and exchanges information using message passing. It is responsible for
the following:

• Requesting and executing plans from the PS
• Requesting and executing failure recoveries from the MIR
• Executing goals and commands from human operators

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
12

• Managing system resources
• Configuring system devices
• System-level fault protection
• Achieving and maintaining safe modes as necessary [Nelson 2001]

The RAX has been a testing platform for several V&V efforts. During development, a model
of a subset of core services was created using the SPIN model checker. SPIN identified five
errors in the program, four of which were classic concurrency errors due to unexpected
interleaving. However, SPIN required manual translation to a specialized language named
PROMELA.
After the initial success with SPIN, developers sought to create a model checking technology
for a mainstream programming language. Early efforts resulted in the translator Java
PathFinder, which automated the translation from Java to PROMELA for use in SPIN.
When an in-flight error occurred, the RAX was again evaluated in a quick-response, �clean
room� experiment testing Java PathFinder. After manually identifying the code sections
most likely containing the error, a group of �back end� analysts created a model of the
suspicious sections in Java, then used the tool to translate the model from Java to PROMELA
for analysis in SPIN. This effort was still labor-intensive, but it led to further advances in
tools that reduced manual effort requirements.

3.1.2 Intelligent Aircraft
There are several organizations investigating the use of NNs in aircraft, though the bulk of
this work remains in the realms of research and experimental aircraft. The trends for this
technology have been to start within research, begin to apply the concepts to military
vehicles, and then finally prove the acceptable use of new technology on aircraft.
Two of the projects discussed below, the Intelligent Flight Control program and the Vehicle
Health Management program have been conducted at the NASA DFRC. These programs
offer a great opportunity for NN V&V because there are several groups, including the ISR,
investigating these processes. Research efforts thus far have produced a V&V guidebook
[Mackall 2002] for NNs and conference publications.

3.1.2.1 Intelligent Flight Controls
The Intelligent Flight Control (IFC) project is a collaborative effort among the NASA DFRC,
the NASA ARC, Boeing Phantom Works, the ISR, and West Virginia University.
Its continuing goal is to develop and flight demonstrate a first generation (GEN1) flight
control concept that can efficiently identify aircraft stability and control characteristics using
NNs, and utilize this information to optimize aircraft performance in both normal and
simulated failure conditions. A secondary goal is to develop the processes to verify and
validate NNs for use in flight-critical applications. The flight project results will be utilized
in an overall strategy aimed at advancing neural net flight control technology to new
aerospace systems designs including civil and military aircraft, reusable launch vehicles,
uninhabited vehicles, and space vehicles.
The IFC system will be tested in flight on the NASA F-15 Advanced Control Technology for
Integrated Vehicles (ACTIVE) aircraft. This aircraft, shown in Figure 3-1, has been highly

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
13

modified from a standard F-15 configuration to include canard control surfaces, thrust
vectoring nozzles, and a digital fly-by-wire flight control system. The use of canard surfaces
along with simulated �stuck� stabilator deflections will allow the program to simulate
different actuator failures during flight.

Figure 3-1. NASA F-15 ACTIVE Aircraft
Two types of NNs make up the components to the GEN1 intelligent flight control scheme. A
PTNN component provides the baseline approximation of the stability and control
derivatives of the aircraft. The PTNN is actually composed of 34 separate multilayer
perceptrons, with some of the networks� outputs combined to form the derivatives. The
networks were trained with two different training techniques: a modification of Active
Selection and the Levenberg-Marquardt algorithm.
The second NN integrated into the IFC system is a highly advanced NN, developed by ARC,
named Dynamic Cell Structure (DCS). Flight tests of the OLNN will demonstrate a flight
control mode for a damaged fighter or transport aircraft that can return the aircraft safely to
base.
Since ensuring pilot and aircraft safety along with overall mission success is a criteria for this
program, each of the participating organizations contributed toward the development of a
V&V guide [Mackall 2002], Verification and Validation of Neural Networks for Aerospace
Systems. This guide was written to assist NASA DFRC in the development of research
experiments that use NNs. It is a first approach toward extending existing V&V standards to
cover fixed and adaptive NNs.
As of this report, the IFC program continues to test and prepare the program for the first
flights using the GEN1 architecture. The next generation of the IFC program is already
undergoing development and is simply known as GEN2 at this time. The next generation of
IFC includes the use of a higher-order NN known as Sigma-Pi. Instead of providing support
for a flight control, this adaptive NN will actually be a component of the controller. Both
NASA centers are investigating the use of Lyapunov stability analysis upon the Sigma-Pi
network as a method for determining its correctness.
This step-by-step inclusion of NN technologies is the roadmap planned by both NASA
DFRC and NASA ARC toward the research and study of NNs within these high safety-
critical roles. As the NNs are proven successful, and those assurance methods that are
developed provide higher and higher levels of confidence, the roles of the networks become
more prominent within the flight control scheme.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
14

3.1.2.2 Intelligent Vehicle Health Management
The sensor failure, detection, identification, and accommodation (SFDIA) system is another
area that has utilized NNs in a safety critical role. The goal to reduce physically redundant
systems with analytical systems without decreasing vehicle safety or stability is the
motivation driving SFDIA development.
Military and civilian aircraft that employ fly-by-wire flight control systems use feedback
control techniques to assist in vehicle performance and handling qualities. These control
techniques are heavily reliant upon accurate data received from aircraft sensors. Corrupted
data have the potential to cause the feedback control laws to command the aircraft into an
unstable or unrecoverable flight condition.
The classical solution to reduce such a possibility is to equip the vehicle with two or more
physical systems that perform the same function (redundancy). If one system fails or is
detected to be untrustworthy, it is deactivated and a duplicate system is activated. The main
disadvantages of the classical solution are added weight, additional power requirements, and
increased complexity of managing physically redundant systems.
Researchers have begun to study methods to replace the extra physical systems with
analytical systems that maintain or increase the level of flight safety associated with them.
Toward that goal, Brian Stolarik [Stolarik 2001] utilized extended back propagation NNs in
an SFDIA scheme applied to the pitch, roll, and yaw rate gyros of the nonlinear De Havilland
2 aircraft model. Four separate networks were organized in a hierarchal manner. The main
NN estimated the roll, pitch, and yaw rate gyro values based on observed aircraft states,
while three separate decentralized networks estimated a single parameter (roll, pitch, or yaw)
based on different observable aircraft states. An SFDIA flow diagram is provided in
Figure 3-2 below.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
15

Figure 3-2. SFDIA Diagram

Differences between actual sensor data and those estimated by the various NNs indicated
problematic sensors. Once errors occurred the decentralized NN estimate would be
substituted for a faulty sensor, thus ensuring quality data for the feedback control system.
This method was tested against six types of possible failures to sensor data: large sudden
bias, small sudden bias, large fast transient, small fast transient, large slow transient, and
small slow transient.
In simulated tests that injected each failure onto each sensor, SFDIA performed as designed
by maintaining stable flight.

3.1.3 Other Safety-Related Neural Network Projects
The most visible areas of NN development are found in space-based exploration,
autonomous rovers, and military fighter aircraft. While these projects account for the
majority of artificial NN press coverage, there are several other areas, all with differing levels
of concern for high assurance and safety-related issues. An excellent source for the overview
of the state-of-the-art in NN use across commercial industries is found in [Lisboa 2001].
These technologies include financial risk management, chemical detection, medical

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
16

diagnosis, nuclear reactor control, and manufacturing and process optimization. Some of the
projects that deal with safety-critical and safety-sensitive applications are highlighted here.

3.1.3.1 Medical Industry
Neural networks can be applied in the fields of medical diagnosis and decision support
systems. As a supporter of medical decisions, not the source of these decisions, they aid
health care professionals in improving overall quality of care without the concerns for high
safety-critical requirements. One commercially available NN system, Papnet, was developed
for the automated classification and to assist in the detection of abnormalities on Pap smears.
Studies conducted on the success of Papnet showed that with the system in place, Papnet
testing increased the detection of cervical abnormalities by 30% [Lisboa 2001].
Oxford University has developed a high-dependency care device for medical patients who
are too ill for normal hospital care but not ill enough for placement in an intensive care unit.
This device monitors five physiological parameters including the electrocardiogram, blood
pressure, oxygen saturation, respiration, and temperature. Through pattern recognition, the
monitor can track physiological instability and alert hospital staff to changes in patient
condition.

3.1.3.2 Power Industry
The Generic NOx Control Intelligent System (GNOCIS) is an on-line advisory or closed-
loop supervisory system to control the levels of nitrogen oxide emissions from coal-burning
power plants. The algorithm works by continuously identifying the optimum settings across
several selected plant control variables including coal feeder speeds and/or airflow. The
GNOCIS system is an on-line adaptive system; it learns beyond the original data that is
installed with the system. Power Technology, which offers specialist engineering and
technical services to power plants, reports reductions of up to 15% of NOx emissions while
improving boiler efficiency at plants that have the GNOCIS system installed, such as
England�s Kingsnorth Power Stations shown in Figure 3-3 [Power Technology 1999]. This
was a marked improvement over existing physical hardware solutions such as retrofitting
existing plants to low-NOx burners.

Figure 3-3. Kingsnorth Power Station

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
17

J. Dukelow highlights the problems the nuclear industry faces in accepting the use of NNs in
safety critical systems [Dukelow 1994]. Due to concern of the accuracy, predictability, and
development of NNs as an art-form, as opposed to rigorous scientific standard, Dukelow
argues in favor of increasing V&V methodologies before NNs can assume greater roles
within the nuclear industry.
Until that time, it appears that NNs are relegated to an off-line analysis mechanism to
improve the results of existing systems. Duke Power and the Knowledge Based Technology
Applications Centre (KBTAC) of the Electric Power Research Institute developed an NN
application that aids in the evaluation of reactor core control assemblies for wear features.
Lisboa explained that such systems, which take on jobs involved in helping human experts,
come at the price of low specificity [Lisboa 2001]. This is perhaps an indication that larger
roles are desired for NNs but until they can be assured, they must remain in a support role
only.

3.1.3.3 Environmental Monitoring
Electronic/artificial noses offer a form of the automated chemical detection and identification
technology that are being developed in the commercial sectors. The electronic nose is
composed of two basic operations: a chemical sensor array for the collection of molecules,
and an artificial NN for the classification of the chemical through pattern recognition. The
Pacific Northwest Laboratory (PNL) is undertaking the creation of electronic noses for
various uses including toxic waste management, air quality control, and detection of
chemical leaks [Keller 1996]. Some electronic nose applications can be safety sensitive
[Lisboa 2001]. As law enforcement makes use of these detectors for drug and explosive
detection, failure of NN use for classification could result in loss of human life or property
damage. Figure 3-4 shows an electronic nose in development at the PNL.

Figure 3-4. Developmental electronic nose at PNL

3.2 Summary of Methods
This summary looks at seven promising areas of research that may lead to the development
of standard practices for neural network assurance. These techniques include rule extraction,
run-time monitoring, model checking, Lyapunov stability analysis, visualization,
improvements in testing methods, and cross validation of NNs. Model checking, which has

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
18

been applied to non-deterministic systems, such as autonomous software that is multi-
threaded, may have less applicability to NNs than other techniques such as rule extraction or
run-time monitoring.
Different methods apply to the different stages of the neural network software life cycle
(Figure 3-5). Cross validation, a technique that would be employed during the design phase
of a project, is realized in the use of ensembles of networks of the same or differing types to
accomplish the same task thus improving the dependability of the system. Rule extraction
applies best to fixed NNs that have undergone some level of training. If a set of rules that
describes how the network will behave has been obtained, the rules can be used in
requirements traceability to verify the network against a system specification. Run-time
monitoring may best be applied to adaptive NNs and is used after they have been deployed
into operation. Lyapunov stability analysis can be used either during a network�s
development or while it is in operation. Lyapunov stability used during operation would be
in conjunction with a system oracle that could decide the NNs performance and make safety
judgments. Improved testing techniques, such as automated testing, would be useful after the
NN has undergone initialization and training. Visualization proves useful during network
training to provide feedback on the learning and decision making processes and as an
analysis tool to understand the results of testing.

Figure 3-5. Applicability of Methods for NN Verification and Validation

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
19

3.2.1 Testing
Testing is the conventional method applied by all NN developers to verify and validate their
software. Because NNs are often treated as black boxes, testing becomes a brute-force
practice where repeated testing procedures are applied to produce some form of reliability
estimation. Neural networks lack the requirement traceability of standard programs and
frequently the notion of NN validation focuses more on the correctness of the network within
its operational profile than on whether or not it meets parts of a system specification. This
section looks at the testing of NNs and how the traditional form of testing NNs may be
improved.

3.2.1.1 Traditional NN Testing
The application of traditional software testing methods to IVVNN can be expensive, time
consuming, and even unrealistic. Although PTNNs may benefit from traditional testing, in
the case of OLNNs these techniques may be inadequate. Traditional testing methods often
seek only to prove the functionality and specifications outlined in the requirements phase of
development. They do not seek to certify that the software will be stable and function
properly after real-time adaptation.
Menzies and Cukic researched the number of tests required to certify traditional software and
confirmed that, in certain circumstances, software could be tested sufficiently with only a
few randomly selected tests [Menzies 2000]. However, such circumstances were not present
often enough to endorse approximate testing for safety critical and mission critical systems.
Rodvold described a software development process model targeted specifically at NNs in
critical applications [Rodvold 1999]. This process is illustrated in Figure 3-6. The testing
and training phase of the model is comprised of nested loops that perform different functions.
Variation of ANN Topologies is the innermost loop and it denotes changes of intra-paradigm
parameters. Variations in the number of hidden layers or neurons per layer in a multi-layer
perceptron are an example of such changes. Variations of ANN Paradigms is the next loop
and contains more basic network changes such as multi-layer perceptrons or radial-basis
functions. Selection and Combination of ANN Input Neurons is the outermost loop where
changes affect the inputs to be modeled by the NN. For example, this loop would contain
any preprocessing of input data needed to reduce noise or minimize dynamic range.

Figure 3-6. Nested Loop Model of Rodvold’s Testing Phase

Neural Network
Training and Testing

Variation of NN
Topologies

Variation of NN
Paradigms

Selection and Combination
of NN Input Neurons

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
20

3.2.1.2 Automated Testing
Automated testing is a practice of reliability assessment that applies a large number of test
cases to ensure a good statistical coverage of the input domain. In the aerospace industry
where failure rates are expected to be 10-9, the number of failure free tests to achieve a
confidence of 99% is on the order of 4.6x109 [Taylor 1999]. Test data generation tools can
create large sets of data that can then be used to test such a system. Automated testing
employed in cases like this can reduce test development time and the involvement of system
testers while returning an increased number of test results.
Most test data generators work on discrete or single valued data. This creates a problem for
reliability estimation of real-time systems where inputs consist of linear sequences of data.
These sequences of data are defined as data trajectories where each element of the data set is
a function of time and a continuous extension over previous data points. Examples of
common real-time systems with data trajectories include the measurement of angular
accelerations and other sensor data from aircraft, equations describing robotic control, speech
analysis, and the data that describes a chemical or nuclear reaction.
A technique developed by Cukic and Taylor is used to generate continuous data for situations
where the initial testing set is too small for adequate automated testing [Cukic 2002]. This
technique was specifically designed for application to NNs and was used on the SFDIA
project described in Section 3.1.2.2.
This trajectory generation scheme relies on expanding existing small sets of test data
trajectories to build regressive prediction models that are statistically similar to the original
test trajectories. The models establish relationships between independent and dependent
variables that allow for perturbation of the independent variables to generate new trajectories
from the dependent variables.
The algorithm for this process is separated into two sections as depicted in Figure 3-7, the
model generation section and the trajectory generation section. The model generation section
consists of collecting a set of test trajectories, processing the data for use by later modules,
clustering the test trajectories into a group and developing a regressive model which can best
fit the clustered group. Several different regressive models can be used in the developing
module, including simple linear, multiple linear, autoregressive, and non-linear regressive
models.

Figure 3-7. Diagram of the Trajectory Generator

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
21

Data can be collected from various sources, including data from actual system usage, data
retrieved via a system simulator, or data from previous test cases applied to other similar
systems. Because regression predicts the relationship between independent-dependent
variables, the collected data must consist of the intended test trajectories to be expanded and
additional controllable variables that have correlation to the test trajectories.
By clustering test trajectories into coarse grain regions of the operational profile, regressive
models can be defined for each region. For each cluster, a single representative trajectory is
selected which best defines the behavior of data within that grouping. From this
representative trajectory a regressive model is developed as shown in Figure 3-8.

Figure 3-8. Example of Trajectory Clusters
A regressive model is constructed for the representative trajectory and then analyzed to
determine fit with the group as a whole. Error calculations consist of applying the regressive
model to the remaining trajectories in the cluster looking for a prediction of the dependent
variables. Since these dependent variables are already known, an analysis of the correctness
for this model within the group can be found. Improvement of the correlation between the
predicted and actual trajectories can come from applying a smoothing function to the output
of the regressive models or returning to the beginning and selecting a completely different
model.
The independent variables from the clusters are then perturbed and the regressive model for
that region is applied to the newly created independent variables (Figure 3-9). This method
generates a new set of predicted dependent variables, the test data trajectories that are being
sought for system testing. Any independent trajectory within the cluster is available to
undergo perturbation, even the representative trajectory. It may be beneficial to perturb each
of the members of the cluster to create additional sets of test data.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
22

Figure 3-9. New Trajectories from Perturbation
One of the most important parts of the entire process is to determine if the newly created test
data actually qualifies as acceptable data. After a set of new dependent variables has been
created, it must be examined to ascertain if it can it be used for system testing. A set of rules
describing acceptable trajectories can be applied against the predicted trajectories to
determine validity. Additional rules can be applied to the perturbed independent trajectories
to determine if these new values are acceptable.
This method has been applied to the SFDIA project with promising results that show the
trajectory generation algorithm is able to produce new test trajectories faster than they could
be simulated or collected from actual usage [Taylor 1999]. A typical simulation flown with a
�pilot-in-the-sim� would take about 25 seconds. For the model generation algorithm, a new
trajectory was generated every 2.25x10-3 seconds, representing a discernible improvement
over collection time from standard pilot-in-the-sim data recording. Autoregressive models
performed best for prediction of aircraft angular rates with newly generated trajectories being
accepted approximately 90% of the time. This implies that the algorithm would generate a
large amount of highly acceptable new test cases that could then be applied to automated
testing.

3.2.1.3 Simulation
System testing often utilizes a simulation environment wherein the software and hardware
interactions are scrutinized. Confidence in the simulation results increases with the fidelity
of the simulation platform. A low-fidelity platform, such as a software-only simulator is easy
to implement but may not yield the most confidence. A high-fidelity platform, such as one
that includes realistic hardware, yields more confidence, but can be expensive, time
consuming, and require a high level of expertise. Most testing plans seek to strike an optimal
balance between required effort and fidelity in designing simulation environments. This is
especially true in those systems that test NNs.
Cukic advocates a modular approach to IV&V of PTNNs, where the fidelity of a simulation
platform is assessed in a piecewise fashion and parts are substituted with higher fidelity
components until the overall system has reached the highest level of fidelity testing
[Cukic 2001]. In the layered approach to testing a PTNN, the focus is placed on the new
component after each switch because some level of confidence already exists with the
remaining components.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
23

Such an approach is supported by the introduction of fidelity classifications that a simulation
platform can have. The classifications range from low fidelity where non-critical
components can be tested, to highest fidelity, where safety critical systems are tested on their
target platform. The four fidelity levels are outlined in Table 3-1.

System
Asset

Fidelity
Level

Level Characteristics Fidelity
Sub-Level

Sub-Level Characteristics

Very low The code can run on the target
virtual machine

Full
simulative
platform

Low Control and controlled
systems are modeled by
software code

Low
medium

The code has to be translated
before running on the target
virtual machine

Medium low Inputs provided by a human driver Hardware in
the loop

Medium A static scaled model of the
controlled system is available

Low high Inputs provided by a computer
system

Scalable
target system

High A dynamic scaled model of
the controlled system is
available

Target
System

Highest The target system is available

Table 3-1. Summary of the Fidelity Levels Introduced

3.2.2 Run-Time Monitoring
Online adaptation, such as occurs with non-deterministic NNs, creates unique problems for
V&V. Testing at any particular point in time �proves� the system for that moment only; the
next data input, whether valid or not, has the potential to alter the behavior of the system as it
adapts to accommodate the new information into its behavior. Constant or periodic
verification and validation can detect system anomalies before a catastrophic event can
occur.
Run-time monitoring involves evaluating the program during execution, and/or evaluating
information such as event logs collected from its execution. Generally, this requires a
secondary program that runs concurrently with the target application. The run-time
monitoring program records specified information (such as data value and timestamp) for
selected variables and events. The information collected can be used to detect either
violation of system constraints or to manage resources at runtime.
Timing properties can be described as the relationship of events during the execution of a
program. Real-time systems can be viewed as a series of events. An event defines the point
in time when something happens. Events can be either task events, which denote state
changes, or run-time events, which are a set of predefined state changes in the system.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
24

Key components of the run-time monitoring event model framework include:
• An annotation system for specifying events and constraints/assertions to be monitored
• A run-time system for recording and timestamping relevant events

• A satisfiability checker for detection constraint violations at run-time
[Jahanian 1995].

In a review of V&V methods for the Integrated Vehicle Health Management project for the
Re-usable Launch Vehicle, [Nelson 2002] a lightweight formal method called �the database
approach� was acknowledged. In this process, V&V objectives are identified, a database tool
is selected, and schema to hold information for analysis is created. The data is parsed (if
needed) and loaded. Then database queries are designed based on the V&V objectives.
This method codes artifacts, such as logs, rather than monitoring program execution. It
leverages the database as the reasoning engine, providing more coverage than simulation
testing, and requires little effort beyond that required of traditional testing.
While traditional run-time monitoring can evaluate the validity of the input and output, �data
sniffing� helps assess and control the adaptive reasoning process of the program. This
method, illustrated in Figure 3-10, utilizes a pre-alert agent and post-block agent to assess the
target program [Lui 2002]. The pre-alert agent captures the incoming data before it enters
the system and determines whether or not it may cause unexpected (undesired) adaptations in
the system. If so, it offers a warning and allows the data into the system with caution. The
post-block agent examines the post-classification value, determines its �distance� to training
class norms and, should the new value fall well outside the training domain, the agent
prevents it from being used. Distance in early trials was calculated using a k-means
clustering algorithm (although better algorithms are sought).
In most instances, introduction of such outlier data would not adapt or degrade system
performance to unsafe conditions. However, data sniffing would enable an extra layer of
protection in the extreme cases where it might.

Figure 3-10. Data Sniffing in an Adaptive System

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
25

In trials, the data sniffing method worked fairly well for data that is not highly relational.
Additional work will include refining the distance calculation algorithm and incorporating
existing machine learning tools that detect anomalies in certain data domains.
Benefits of run-time monitoring are that, generally, it requires little incremental effort over
traditional testing. It can locate difficult-to-find errors that testers might not find or envision.
Cons include the overhead that it adds to program execution. It is prone to find false
positives (problems that do not exist). Furthermore, since run-time monitoring observes
generally one execution, certain paths may not be covered in a specific run and, therefore,
some errors may be missed.

3.2.3 Lyapunov Stability Analysis
Lyapunov stability analysis can play a critical role in the verification and validation of NNs.
Lyapunov�s direct (second) method is widely used for stability analysis of linear and
nonlinear systems, both time-invariant and time-varying. It can provide insight into a
system�s behavior without solving the system�s mathematical model. Viewed as a
generalized energy method, it is used to determine if a system is stable, unstable, or
marginally stable.
Nonlinear, time-varying systems, such as NNs, can be mathematically expensive, if even
possible, to prove. Used solely as a theorem-proving mechanism, the direct method can
guarantee bounded network stability or bounded output. Conclusions about the stability (or
instability) of a network can be obtained by constructing a suitable auxiliary function known
as a Lyapunov function and denoted as V(x).
Consider an autonomous system described by the differential equation:

()xfdt
dx =

with an equilibrium point f(0) = 0. If a Lyapunov function, V(x), can be determined such
that:

() 0≤dt
xdV

then the equilibrium point is said to be marginally stable. The equilibrium point is
considered stable if:

() 0<dt
xdV (3.1)

A function V(x) that is either positive definite stable or marginally stable as described above
is called a Lyapunov function. It is not unique; rather, many different Lyapunov functions
may be found for a given system. Likewise, the inability to find a satisfactory Lyapunov
function does not mean that the system is unstable.
There is no universal method for constructing a Lyapunov function. A form of V(x) can be
assumed, either as a pure guess or constructed from physical insight. Trial-and-error is
normally a last resort.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
26

A better understanding is obtained through an example. Consider the following autonomous
system with the equilibrium point (0,0) as detailed in [Boyce 1997]:

2xyxdt
dx −−=

yxydt
dy 2−−=

Using the direct method, the stability of the equilibrium point can be discovered. The first
step is to describe a Lyapunov function, V(x). The quadratic form is a common starting
place:

() 22, cybxyaxyxV ++=

With the proper selection of a, b, and c, V(x, y) can be made to be a positive definite function
(greater than zero). Now we need to calculate the rate of change of V(x, y) and substitute the
system into it:

() () () ()[]22233222 222, yxycyxxyxybyxxadt
yxdV ++++++−=

Though this equation is unintuitive, let a and c be any positive number and set b = 0. The
Lyapunov equation and its derivative now reduce to:

() 22, cyaxyxV +=

() () ()[] 022, 222222 <+++−= yxycyxxadt
yxdV

Since a and c are positive numbers, then regardless of the states of x and y, V(x, y) will be
positive and dV(x, y)/dt will be negative. Thus, according to the second condition of
Lyapunov�s direct method (Equation 3.1), the equilibrium point [Boyce 1997] is stable for
this system. A more pertinent example of the use of Lyapunov�s direct method on NNs is
outlined in [Yu 2002].

3.2.4 Rule Extraction
Rule extraction is the process of developing English-like syntax that describes the behavior
of an NN. All rule extraction techniques reviewed share a common prepositional �if...then�
format.
Rule extraction offers the possibility of requirements traceability into a system that is not
explicitly designed. The rules can also undergo design team review and analysis to detect
improper network behaviors or missing knowledge.
Through rule extraction, a system analyst might be able to ascertain novel learning behaviors
that had not been previously recognized. By translating these features into a comprehensible
English sentence, the analyst can gain not only a better understanding of the network�s
construction, but perhaps the input domain as well.

IVVNN-LITREV-F002-UNCLASS-111202

Use

Rule Initialization and Rule Insertion
The same techniques used to map rules from the network in rule extraction can also be used
in two additional ways: rule initialization or rule insertion.
Rule initialization is the process of giving the adaptive network some pre-system knowledge,
possibly through early training or configuration. A system developer may have improved
confidence if the starting condition of the network is known, which may lead to a constrained
path of adaptation.
Rule insertion is the method of moving symbolic rules back into a network, forcing the
network�s knowledge to incorporate some rule modifications or additional rules. An
adaptive network could benefit from this scheme if the system developer wanted to exert a
condition onto the network or reinforce conditions in the network. Examples of this might
include restricting the network to a region of the input space or instructing it to deliberately
forget some data it has already seen.
For purposes of brevity and conciseness, this review is only concerned with studying how
rules can assist in the verification and validation of NNs. However, it should be noted that
the other uses for rules could be important towards V&V, especially with regard to
controlling how an NN behaves and changes.
Advantages and Disadvantages
Rule extraction from NNs may have greater utility for fixed NNs than for dynamic NNs.
Fixed NNs proceed through the steps of training and testing until they reach an acceptable
error threshold and only then are they used within a system. The knowledge of the domain is
considered embedded inside the weights and connections of the network. If the network is
no longer encouraged to adapt, the symbolic rules extracted to describe it can be a useful tool
to validate that network at that specific time.
With a dynamic NN, it may be that symbolic rule extraction would be required at
intermediate stages in the learning. At some intermediate points symbolic rules would need
to be extracted and passed through an oracle or system monitor to confirm that the network
was still �correct.� It may be that the benefits for dynamic systems lie with rule insertion or
rule initialization.
Rule Formats and Definitions
Rule extraction algorithms will generate rules of either conjunctive form or subset selection
form, commonly referred to as M-of-N rules named for the primary rule extraction that
makes use of the form. All rules follow the English syntactical if-then prepositional form.
Conjunctive rules follow the format:

Here the
value (RE
The cond
(0.25 ≤ d
the netwo
each inpu

IF condition 1 AND condition 2 AND condition 3 THEN RESULT
 or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
27

RESULT can be of a binary value (TRUE/FALSE or YES/NO), a classification
D/WHITE/BLUE), or a real number value (0.18).

ition can be either discrete (flower is RED, ORANGE or YELLOW) or continuous
iameter ≤ 0.6). The rule extraction algorithm will search through the structure of
rk and/or the contents of a network�s training data and narrow down values across
t looking for the antecedents (conditions) that make up the rules.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
28

 Subset rules, or M-of-N rules, follow the format:

Cravin and Shavlik explain that the M-of-N rule format provide more concise rule sets in
contrast to the potentially lengthy conjunctive rule format [Craven 1994]. This can be
especially true when a network uses several input parameters and a value for several of these
parameters composes the rule.

3.2.4.1 Rule Extraction Techniques
R. Andrews identifies three categories for rule extraction procedures: decompositional,
pedagogical, and eclectic [Andrews 1995a]. Each approach may generate Boolean or fuzzy-
logic rules. A breakdown of the classifications and the techniques is presented in Table 3-2.

Table 3-2. Rule Extraction Classifications

 Boolean Fuzzy

Decompositional Subset
KT
Rulenet
M-of-N
KBANN
RULEX

Masuoka

Pedagogical Sato/Nakano
VI-Analysis
Ruleneg
BRAINNE
Dedec

Berenji
Horikawa
FNES (Hayashi)
Fune 1 (Halgamuge)
fuzzy – MLP (Mitra)
Okada

Eclectic Rule Extraction as Learning

There are several dozen different rule extraction techniques; many are no more than a
succeeding version of a previous technique. The techniques that appear prominently in the
literature will be discussed below. Other techniques, such as fuzzy logic and Boolean rule
extraction, discussed in the survey paper [Andrews 1995a] do not seem to be widely used or
are not well documented, as judged by the lack of information in the literature.

3.2.4.1.1 Decompositional
Decompositional rule extraction involves the extraction of rules from a network in a neuron-
by-neuron series of steps. This process can be tedious and result in large and complex
descriptions. The drawbacks to decompositional extractions are time and computational
limitations. The advantages of decompositional techniques are that they do seem to offer the
prospect of generating a complete set of rules for the NN. These rules are also of a binary
form; the outputs of the neurons are mapped into a yes/no condition that Andrews refers to as
a rule consequent [Andrews 1995a].

IF (M of the following N antecedents are TRUE) THEN RESULT

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
29

Some of the more prevalent decompositional tools and techniques are those discussed by Fu
[Fu 1994], Towell and Shavlik [Towell 1993], and Andrews [Andrews 1995a]. They include
subset algorithms, M-of-N, RULEX, and RuleNet.
Subset Algorithms
SUBSET and KT are two well-known subset algorithms within decompositional rule
extraction.
Fu developed the KT algorithm that is able to handle NNs with a smooth activation function,
such as the backpropagation network with a sigmoid function, where the activation function
is bounded in the region of [0, 1] [Fu 1994].
The SUBSET algorithm is an extension of the KT algorithm suggested by Towell and
Shavlik [Towell 1993]. The SUBSET routine specifies an NN where the output of each
neuron in the network is either close to one or close to zero, as opposed to existing
somewhere between the bounds of zero and one. This changes the importance of links
between neurons in that the values that propagate on a link are close to the value of that
link�s weights, or zero.
These algorithms make use of the notion of pos-att and neg-att. A pos-att is the input into a
node that travels along a positive weight connection. Likewise, a neg-att is an input into a
node that is connected with a negative weight. Consider the nodes and connections in
Figure 3-11. The value that is passed between node I1 and O1 is considered a pos-att, while
the value passed between node I2 and O1 is a neg-att.

Figure 3-11. Description of pos-att and neg-att

The algorithm proceeds on a node-by-node basis to determine the combination of pos-atts
and neg-atts that will activate the node, and from that set creates a rule. The algorithm
follows the steps listed in Table 3-3.

IVVNN-LITREV-F002-UNCLASS-111202

Use o

Table 3-3. Subset Algorithm

For each node in the output layer and each node in a hidden layer
 Search for a set, Sp, of pos-atts whose summed weights exceed the threshold of the
 node being investigated
 For each element, p, in set Sp
 Search for a set, Sn, of neg-atts that, in addition to the summed pos-atts from p,
 and the summed weights of n, from Sn, exceed the threshold on the node
 Create a rule, Rx, of the form:

 where the pi is the last pos-att in the element p from set Sp, ni is the last neg-
att in the element n from set Sn, and RESULT is the output from the node.

The subset algorithms are capable of finding confirming and disconfirming rules. To find
confirming rules, these algorithms look for sets of pos-atts and neg-atts as described above.
Confirming rules are composed of pos-att and NOT neg-att combinations which when
summed cause the node they feed to activate. Disconfirming rules are found in the same
manner. The algorithm looks for combinations of neg-atts and then searches for conjunctions
with negative pos-atts.
A drawback to the KT and SUBSET approaches is that the computation time required to find
all of the sets of pos-atts and neg-atts is a function of the number of links between nodes and
the overall search algorithm is exponential. Fu suggests the use of a control variable, k, to set
the size of the rule; k dictates the number of attributes, positive or negative, which may
appear in a rule [Fu 1994]. While this has the effect of decreasing computational time, it
may cause the algorithm to miss important rules describing the network.
M-of-N
The work of Towell and Shavlik on the SUBSET algorithm led to a rule refinement method
on the results of the SUBSET.
The M-of-N method generates rules that are of the form:

IF (M of the following N antecedents are TRUE) THEN RESULT
Rx: IF p1 AND p2 � AND pi NOT n1 NOT n2 � NOT nj THEN RESULT
r disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
30

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
31

The algorithmic approach for the M-of-N method is reflected in Table 3-4.

Table 3-4. M-of-N Algorithm

1. For each node in the output layer and the hidden layer, form groups of
similarly weighted links.

2. Set link weights of all group members to the average of the group.
3. Eliminate any groups that are insignificant to the activation (or non-

activation) of the node.
4. Holding all link weights constant, optimize the biases of all hidden and

output nodes using the backpropagation algorithm.
5. Form a single rule for each hidden and output node. The rule consists of

a threshold given by the bias and weighted antecedents specified by the
remaining links.

6. Where possible, simplify rules to eliminate superfluous weights and
thresholds.

Towell and Shavlik compare their improvement over SUBSET. They state that because the
SUBSET routine generates a larger set of rules than the M-of-N technique, the rule sets
returned by M-of-N are usually easier to understand than those of SUBSET. In regards to
computation time, the SUBSET algorithm is exponential while the M-of-N technique is
approximately cubic. The comparison studies conducted by Towell and Shavlik indicate that
the rules generated by M-of-N are approximately equal to the accuracy of the networks that
they describe and that the SUBSET algorithm rules are significantly worse.
A potential drawback to the M-of-N approach is that this method requires the network to be
knowledge based. (This is a similar drawback to the pre-existing SUBSET and KT
methods.)
Andrews [Andrews 1995a] lists the four central requirements for the M-of-N approach based
upon the work of Craven and Shavlik [Craven 1994]:

• The NN must be initialized with a rule set or undergo special training to cause a
clustering of internal links into equivalence classes,

• The network must have a special training regime,
• Hidden nodes in the network must be approximated as threshold units,
• The extracted rules must use an intermediate term to represent the hidden nodes.

Andrews points out that this may not give rise to a sufficiently accurate description of the
network. Further, since the M-of-N approach requires that hidden node meanings not
significantly change during the training process, those cases where training does significantly
change the internal structure of a network during adaptation may lead to degraded rule sets.
RULEX
RULEX [Andrews 1995b] is a tool and a technique an expanded discussion of RULEX will
be given in Section 3.3.13. Created by Andrews and Geva, RULEX is a tool that can extract
symbolic rules from a specific kind of multilayer perceptron (MLP), the Constrained Error

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
32

Backpropagation (CEBP) network. This network is considered a local function network, but
may be more easily understood as a network where the internal structure represents regions
of the input space.
Whereas the SUBSET and KT approaches search through the connections of a node to find
sets of antecedents, the RULEX approach will generate rules from the weights of the
connections between the nodes. This reduces the complexity level of the search for
antecedents.
RuleNet
RuleNet is a technique which differs from the above methods in that RuleNet is itself an NN
architecture, and by the very nature of the structure and training of the architecture lends
itself to rule extraction [McMillan 1991; Andrews 1995a].
RuleNet is constructed of three layers of neurons: an input layer, an output layer, and a
middle or hidden layer that the authors call a condition layer. The neurons in the condition
layer compete in a winner-take-all fashion based upon inputs that pass through the input
layer. Each condition-neuron specifies a set of connections from the input layer into the
output layer, the output layer then generate the network response. So this intermediary
condition layer does not directly contribute to the response, instead it coordinates how the
inputs pass into the output layer.
Since each neuron in the condition layer has a chance to be the winner, each neuron operates
alone. The extracted rules decompose the weight vector from the condition neuron and the
weight vectors from the output layer to form prepositional �if�then�else� rules.
The major drawback to the usage of RuleNet is that it does not lend itself to general
techniques; instead it focuses on a specific problem domain.

3.2.4.1.2 Pedagogical
Pedagogical rule extraction is the extraction of a network description by treating the entire
network as a black box. In this approach, inputs and outputs are matched to each other. The
decompositional approaches can produce intermediary rules that are defined for internal
connections of a network, possibly between the input layer and the first hidden layer.
Pedagogical approaches usually do not result in these intermediary terms. Pedagogical
approaches can be faster than the decompositional, but they are somewhat less likely to
accurately capture all of the valid rules describing a network�s contents.
Thrun developed Validity Interval Analysis (VI-Analysis or VIA), the core technique within
the pedagogical approach [Thrun 1995].
VI-Analysis
Validity Interval Analysis is a pedagogical approach that enables the extraction of rules that
directly map inputs to outputs for arbitrary, trained multi-layer backpropagation network
[Andrews 1995a].
The key idea of VI-Analysis is to attach intervals to the activation range of each input
parameter looking for the network�s activations that lie within these intervals. These
intervals are called validity intervals. An example of a validity interval on a single input that
is bounded by [0, 1] would be [0.2, 0.8]. This is the same as if 0.2 ≤ input ≤ 0.8.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
33

VIA checks whether such a set of intervals is consistent, i.e., whether there exists a set of
network activations inside the validity intervals. It does this by iteratively refining the
validity intervals, excluding activations that are provably inconsistent with other intervals.
The end result is a set of validity intervals for each input, a hypercube across all of the input
dimensions.
The rules generated by VIA can take on the form:

RESULT isoutput hypercubeinput i THEN IF ∈

where a hypercube is the bounded region that encapsulates all of the allowed input values for
each input dimension.
There are two phases to determining the validity intervals: forward and backward. The first
involves selecting a best guess interval and propagating this interval forward into the network
as if it were a single input value.
Consider the single neuron example in Figure 3-12, in which Input I1 is constrained to the
range [0; 0.2] and input I2 is constrained by the range [0.8; 1.0], and the bias, θ, is -6. The
lower box represents what will occur inside the neuron. First the weighted inputs are
summed with the bias. This result is acted on by the activation function. Instead of treating
the inputs as a single point value, the VIA technique uses the input ranges to compute an
output range.

 Figure 3-12. VIA for a Single Neuron
The value of net is computed once for the minimum value, then again for the maximum
value.

() ()
() () 21641420

82648040

2211max

2211min

.. θwIwInet
.. θwIwInet

−=−⋅+⋅=+⋅+⋅=
−=−⋅+⋅=+⋅+⋅=

With the assumption that all transfer functions are continuous, the function can operate upon
the netmin and netmax to obtain the output interval.

()
() 2315.02.1

0573.08.2

min

min

=−=
=−=

σ
σ

O
O

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
34

which gives the output interval [0.0573; 0.2315]. This could immediately be mapped into a
rule:

[]2314.0;05732.08.02.0 21 ∈≥≤ OII THEN AND IF

assuming the inputs will never exceed the values of 0 or 1, which would occur if they were
normalized to the range of [0; 1]. This rule can be simplified further:

5.08.02.0 21 <≥≤ OII THEN AND IF

The backward phase of VIA can be conducted when an output interval is known or predicted
and all but one of the input intervals are known or predicted. Instead of looking for values
that cause an activation, a range for an input is sought based upon working backwards with
the activation function and summation.
Staying with the example from Figure 3-12 if an output range for O is known, and an input
range for I1 is known or predicted, then the equations to find the intervals for I2 would be:

() ()

() ()
2

11max
1

2

2

11min
1

2

max

max

min

min

w
wIO

I

w
wIO

I

θσ

θσ

−−
=

−−
=

−

−

Note that even though this simple example uses one neuron, the strength of the pedagogical
approach is that rules are not written in a neuron-by-neuron approach but are built up by
traversing the intervals from the outermost layer of the network through to the first layer or
vice versa.
The validity intervals are refined using linear programming. An interval is considered fully
refined when a set of validity intervals forming the hypercube results in an inconsistency.
Inconsistencies occur on either the input interval with forward propagation or output interval
with backwards propagation. The inconsistency is caught when intervals are propagated in a
direction and result in a null, or empty, set. For input intervals with forward propagation, an
empty set indicates that there is no activation pattern (and thus an NN output) that would
satisfy the input interval constraints. For output intervals with backward propagation, the
empty set indicates that for the particular activation interval, no input intervals exist that
would achieve that output.
There are three reported concerns with this approach. The first is with the linear
programming technique employed by VIA in determining if a set of constraints on a
network�s activations is consistent. Keedwell argues that the linear programming approach is
worst-case exponentially complex, even though the results that Thrun publishes never
showed this limitation [Keedwell 2000]. A second is that the repeated application of the
linear programming algorithm to NNs with large numbers of neurons may increase the
solution time to an exceptionally long duration. The third concern is on the generated rules
themselves. Duch points out that the VIA technique may have a tendency to extract rules that
are too specific and rather numerous [Duch 2001].

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
35

3.2.4.1.3 Eclectic
The eclectic approach is merely the use of those techniques that incorporate some of a
decompositional approach with some of a pedagogical approach, or techniques designed in
such a way that they can be either decompositional or pedagogical. The Rule-extraction-as-
learning method, for example, is designed such that it can use either technique.
Rule-Extraction-As-Learning (REAL)
In a paper describing the REAL technique, Cravin and Shavlik discuss a way of extracting
rules through supervised learning and network querying as opposed to the common search-
based techniques from the previous sections [Craven 1994]. (They refer to the search
methods as Rule-extraction-as-search approaches.) Many of the search algorithms try to find
rules that explain the activations of hidden layer and output layer neurons in the networks.
The REAL technique instead will learn from the training examples and query a network to
determine if the specific instances from the training set are covered by the target output
result.
Craven and Shavlik argue that the search-based methods require a computational complexity
that is exponential to the number of input parameters to the network. For some situations,
their REAL method can be proven to have lower computational requirements and yet arrive
at rule sets that have the same degree of accuracy.
Table 3-5 outlines the RULE algorithm from Craven and Shavlik. The REAL system uses
two oracles; an EXAMPLES oracle and a SUBSET oracle. The EXAMPLES oracle
produces training examples (from the existing training set) for the rule-learning algorithm.
The authors proposed that when the EXAMPLES oracle exhausts the contents of the training
set, it might be possible to randomly generate new examples (as might be done by an
automated test generation algorithm). The SUBSET oracle takes the arguments of a class
label (the output result) and a conjunctive rule and tries to determine if all of the instances
covered by the rule are members for that target output. If so, SUBSET returns true and
continues. If not, then this input into SUBSET serves as the basis for a new rule.

Table 3-5. Conjunctive Rule Extraction Algorithm

Once a new rule is found, the algorithm attempts to generalize it by removing antecedents
from the rule until a minimum set of antecedents can be combined into a conjunctive
statement.

/* initialize rules for each class */
for each class c
 Rc := Ø
repeat
 e := EXAMPLES()
 c := classify(e)
 if e not covered by Rc then
 /* learn a new rule */
 r := conjunctive rule formed from e
 for each antecedent ri of r
 r’ := r with ri removed
 if SUBSET(c, r’) = true then r := r’
 Rc := Rc V r
until stopping criterion met

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
36

SUBSET can be implemented as either a pedagogical approach such as VI-Analysis, or as a
decompositional approach where the rules are extracted for each hidden and output neuron
individually.
The authors also made a version of REAL that extracted M-of-N rules since these rules are
typically more concise than conjunctive rules.
[Craven 1994] explain that the M-of-N REAL algorithm works in the same manner as the
conjunctive rule extraction in Table 3-5. The algorithm, seen expanded in Table 3-6, first
learns a conjunctive rule using an example from the training set supplied by the EXAMPLES
oracle. The algorithm then converts the conjunction into a M-of-N rule where M = N and the
antecedent is merely placed into the set. The next step is to generalize the rule by applying
two operators:

• Add-value: adds a new feature into the set of antecedents that is not yet present

• New-term: takes an existing set of antecedents and splits it into two sets of the form
L-of-L and (M-L)-of-(N-L).

The SUBSET oracle is responsible for determining if the generalized rule is consistent with
the network. The algorithm continues looping through all operator applications until the rule
can no longer be generalized.

Table 3-6. M-of-N Rule Extraction Algorithm
/* initialize rules for each class */
for each class c
 Rc := Ø
repeat
 e := EXAMPLES()
 c := classify(e)
 if e not covered by Rc then
 learn conjunctive rule, r, as in Table 3-5
 trivially convert r to a M-of-N rule where M = N
 do
 r’ = result of applying add-value or new-term to r
 if SUBSET(c, r’) = true then r := r’
 while ∃ additional operator applications
 Rc := Rc V r
until stopping criterion met

The test studies suggest that the REAL conjunctive method is two orders of magnitude faster
than the search based conjunctive methods and the REAL with M-of-N performed an order
of magnitude slower than REAL with conjunctive rules and an order of magnitude over
search-based conjunctive rules methods. The decreased speed using the M-of-N approach did
lead to more concise rules.
For networks with a small search space, the search-based methods may be best. For
networks with a large number of features, the learning method will be best.
One of the main drawbacks to this algorithm is that it does not yet deal with real-valued
output features. This paper focused on discrete-valued output features, which limits its
applicability to these domains.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
37

3.2.5 Cross Validation
Cross validation is an approach similar to N-version programming. Its basis is �reliability
through redundancy,� a concept from software engineering. The cross validation concept
centers on combining diverse Artificial Neural Networks (ANNs) into an ensemble. The
output of the component networks may then be checked against one another to affirm validity
and appropriateness. This model is particularly suitable for safety-critical environments.
While results indicate that using ensembles of NNs increases the performance over a single
NN, redundancy alone does not ensure improved performance. It must first be determined
what kind of diversity may lead to improved performance, and what is the best way of
creating sets of NNs that show this kind of diversity [Sharkey 1995a].
Amanda and Noel Sharkey list numerous methods for such ensemble combinations. One
such method relies on training NNs from different starting points, or different initial
conditions. Another method varies the topology or number of hidden units, or the algorithm
involved. Other methods rely on varying the data, such as sampling, using different data
sources, different preprocessing methods, distortion, and adaptive resampling.
If the ensemble is made up of differing types of networks, then the output (prediction) of
each of the NNs is collected and combined. The combination can be done in several ways,
including voting, average, or weighted average. This method is used to improve the output
of an NN by having several �opinions� on which to base the final decision [Krogh 1995].
The Sharkeys discuss four types of diversity for ANNs. Type 1 and Type 2 guarantee
reliability with simple majority vote, Type 3 improves reliability with sophisticated selection
that may create reliable ANN systems, and Type 4 can improve reliability but cannot lead to
a fully reliable ANN system. Features of each type are presented in Table 3-7.

Table 3-7. Four types of diversity for ANNs

Type Features

1 ! The target function is covered by the collection of ANNs
! None of the failures are coincident
! Majority will always be correct since only one will ever fail on the randomly chose input
! Requires n > 2

2 ! The target function is covered by the collection of ANNs
! Allows coincident failures
! Majority is always correct
! Requires n>4

3 ! The target function is covered by the ANNs
! Majority voting is not always correct
! More sophisticated voting is performed, weights are assigned to the output of different nets

4 ! The target function is not covered by the ANNs
! There are failures shared by all ANNs

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
38

Two methods have been presented to create the diversity necessary for NN ensembles to be
efficient.

• Use different sample sets to train each copy of the ANNs. This increases diversity,
but has not been shown to achieve Type 1 and Type 2 diversity.

• Use different interpretations of input states from a system to train the ANNs. This is
also known as contrasting measures methodology. For example, two contrasting
measures taken from a ships engine state, such as temperature and pressure, may be
used as training input to different groups of ANNs. They are effectively being trained
on different functions both being used for the same purpose. This is the most
statistically independent among the solutions.

A study by Sharkey, Sharkey and Chandroth uses the combination of varying sample sets and
contrasting measures to create a Type 1 system [Sharkey 1995b].
Applications
These methods have been applied in several studies, including engine health monitoring, a
launch interceptor problem, and a compare-length problem [Sharkey 1995a].
The first study on engine health monitoring investigated the possibility of creating a Type 1
system using three ANNs for online detection and diagnosis of combustion faults in a marine
engine. The ANNs were trained to classify pressure data generated by the MERLIN1 engine
simulator. The same sample of 150 training pairs was used to train each of the three ANNs.
One ANN was trained on the raw data, and the other two were trained on preprocessed data
using two different kinds of transformations. A test set of 414 pairs were reserved. The
ANN trained on the raw data exhibited a 99.3% correct generalization on the test set. The
ANN trained on the data after preprocessing with Transformation A exhibited 98.1% correct
generalization. The one trained on the data preprocessed under Transformation B exhibited a
95.7% correct generalization. Although the three ANNs exhibited high performance, none
were 100% accurate. When the three were combined into a voting configuration, they
covered the function, they encountered no coincident failures, and the majority vote was
always correct (at least on the test set). Therefore, this transformation methodology can lead
to Type 1 diversity.
The second case study, a launch interceptor, showed similar results. Three ANNs were
trained on sets of 500 data values, one with raw data, and the other two with transformed
data. The goal was to classify the data as a Launch or No Launch example. Five thousand
examples were reserved as a test set. In this study, the ANNs each performed above 98%.
When the networks were combined to form a system, they had no coincident errors, they
covered the function, and the majority vote was always correct for the test set. This is
another example of Type 1 diversity.
In the third test case, compare-length function, an ANN was trained on 9,408 patterns. A test
set of 8,280 patterns was created. The ANN exhibited a 99.8% correct generalization for the
test set. Since this was a geometric problem, rotating the input space through six different
angles created diversity. The six angles of rotation and their percentage correct
generalizations on the test set were 50° (99.49%); 100° (99.65%); 150° (99.52%); 200°

1 Engine simulation software developed by Lloyds Register of Shipping, London.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
39

(99.43%); 250° (99.65%); 300° (99.75%). The diversity created by rotating the test set was
of Type 2 because there were coincident failures. However, in this situation, the majority
was still always correct on the test set.
Pros and Cons
The advantage to using the cross validation method of combining ANNs is the ability to
increase the performance of an NN system by introducing diversity. The disadvantage is that
the component NN still requires verification and validation.
Cross validation must be built in at the design phase of the project.

3.2.6 Visualization
Understanding the operation of NNs is no small undertaking. Neural networks for solving
real-world problems may have several thousand connections. Understanding the
representations formed by the network during the learning process requires making sense of a
vast amount of real-valued parameters. Furthermore, network units usually have many
incoming connections.
For designers and end-users of NNs to have confidence in the performance of the system,
however, they must understand how it arrives at its decisions. Visualization helps bridge
these cognitive chasms by illustrating relationships and flows.
Scientific visualization involves transforming data into visual forms that can be easily
understood. Humans have highly developed abilities for visual pattern recognition that can
be capitalized when vast quantities of data are transformed into a qualitatively different form.
Visualization can provide insight into both the decision-making process and the learning
process of NNs.
Visualization may assist NN users in discovering data features whose importance was not
previously recognized. It may also help in understanding changes to the system that have
occurred during training. These techniques also allow the user to detect error or patterns
more easily because they appear as visual anomalies. Additionally, visualization software
can provide an interactive mechanism that enables the user to adjust parameters and quickly
see the effects of the changes.
Craven and Shavlik discuss several visualization techniques [Craven 1992]. These
techniques provide insight into the decision-making processes and the learning processes of
NN. These techniques are listed in Table 3-8 and described in the following paragraphs.

Table 3-8. Selected Visualization techniques
Technique Used to Illustrate

Hinton diagram Weights and biases
Bond diagram Weights and biases
Hyperplane/hyperplane animator Hidden units affecting decisions
Trajectory diagram Weight space
GUI/KBANN Topology and initial weights
Lascaux Forward propagations of activations

Backward propagation of error
Changes to weights and biases

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
40

The Hinton diagram, developed in 1986, was one of the first visualization methods. It
provides a compact visual display of the weights and biases related to a particular NN
[Hinton 1986]. Figure 3-13 depicts an NN and the Hinton diagram to visualize the network.

Figure 3-13. Neural Network and Related Hinton Diagram
These diagrams show the two hidden units and the output unit of the network. The boxes in
the lower part of each diagram depict weights from (to) hidden units, and the boxes in the
middle of each diagram depict a weight to the output unit. A unit�s bias is drawn in the
position in the unit�s diagram where weights to and from the unit are shown in the other
diagrams. The Hinton diagram is a rather weak method for visualization because the
topology is not readily apparent from the diagram and it does not clearly show how a unit
partitions its input space.
Wejchert and Tesauro developed the bond diagram in 1990 [Wejchert 1990]. This
visualization method illustrates the sign and magnitude of each weight and bias in the
network, but, unlike the Hinton diagram, it does show the topology of the NN. In the bond
diagram, each unit is represented as a disk. The size of the disk indicates the magnitude of
the unit�s bias. The weights are represented by the bonds linking the disks. The amount
(width) of the bond indicates the magnitude of the weight, and the color represents the sign.
Figure 3-14 shows a bond diagram for the simple NN structure presented in Figure 3-13.

Neural
network

Hinton
diagram

Neural
network

Hinton
diagram

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
41

Figure 3-14. Bond Diagram
Since different geometric forms are used to depict weights and biases, it is not as easy to see
how the weights compare to the biases. This is not the case in the Hinton diagram, where
both weights and biases are boxes. Using the same geometric object can provide visual
information on the relative magnitudes of the weights versus the biases. This can help
answer a question such as �Which input units need to be active in order for the net input to
exceed the bias of this hidden unit?�
One way to visualize the learning process is to graphically display the movement of the
hyperplane in the input space of the unit that the hyperplane represents [Munro 1991;
Pratt 1991]. A hyperplane diagram can show how hidden units make decisions in an input
space defined by input units, or it can show how output units make decisions in an input
space defined by hidden units. Figure 3-15 shows the hyperplane diagram of the NN
pictured in Figure 3-13.

Figure 3-15. Hyperplane Diagram
The axes of the diagram denote the range of activations that may be propagated to the units
through their incoming connections. Data points that a network is learning to classify may be
plotted in the space. Each hidden unit of the network is represented by the hyperplane (in
this case the line) that indicates how the unit is partitioning the input space. The learning

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
42

process is automated by showing the movement of the hyperplane as the weights and biases
of the network are changed.
One limitation of a hyperplane diagram is that only two- or three-dimensional input spaces
can be depicted. Selecting a two- or three-dimensional projection of the actual input space
may be used to depict an input space of higher dimensionality. There may be a problem
choosing which projection to view. Statistical techniques, such as principal component
analysis or canonical discriminant analysis, may be useful in determining which projections
would provide the most information.
Hyperplane representation can also be animated. Pratt and Nicodemus [Pratt 1993] reported
on case studies using a hyperplane animator that they developed, pictured in Figure 3-16.
The animator is able to display the relationship between a network and the training data, and
is also able to show the changes in that relationship during learning.

Figure 3-16. Sample Screen from Hyperplane Animator
The trajectory diagram is another visualization method developed by Wejchert and Tesauro
[Wejchert 1990]. The trajectory diagram is designed to provide insight into the weight space
for a given problem. A trajectory diagram depicts the movement of a given unit through the
weight space. Figure 3-17 shows the trajectory over a hypothetical training session of the
rightmost unit in Figure 3-13.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
43

Figure 3-17. Trajectory Diagram
The trajectory is plotted in the space defined by the two weights impinging on this hidden
unit. The thickness of the trajectory line indicates the network error along the trajectory. A
network unit at a given point in time is plotted as a point in the diagram; the coordinates of
the point are specified by the values of the weights feeding into the unit. As learning
progresses, the point is replotted to reflect the updated values of its incoming weights
A weakness of the trajectory diagram is the inability to visualize high-dimensional weight
spaces. These diagrams have only minimal usefulness because of this limitation. Attempts
to visualize higher-dimension weight spaces by projection may lead to diagrams that are not
unique.
A graphical interface for visualizing knowledge-based NNs has been developed by the
University of Wisconsin. A weakness of conventional NNs is that they provide no way to
exploit existing knowledge about the problem to be solved. The knowledge-based NN
(KBANN) algorithm [Towell 1990] provides an approach to incorporating existing
knowledge into an NN. The KBANN algorithm uses a knowledge base of domain-specific
inference rules in the form of PROLOG-like clauses to determine the topology and initial
weights of an NN. The domain theory does not need to be complete or correct; it need only
support approximately correct domain reasoning. KBANN translates a domain theory into
an NN in which units and links correspond to parts of the domain theory. Consider the
approximately-correct domain theory for recognizing cups, which is depicted in Figure 3-18.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
44

Figure 3-18. Hierarchical Structure of Cup Domain Theory
The hierarchical structure of the domain determines the topology of the knowledge-based
NN: the input units of the network represent the base-level facts of the domain theory, the
hidden units represent intermediate conclusions, and the output unit represents the final
conclusion. After the network topology and initial weights have been determined by
KBANN, the network is trained using the backpropagation algorithm and a set of training
examples. After training, refined rules can be extracted from the network [Towell 1991].
Lascaux is another tool developed by the same group at the University of Wisconsin. It
assists in further visualizing the NN both during and after learning. This tool enables
visualization of the learning process by depicting forward propagation of activations, the
backward propagation of error, and changes to the weights and biases of the network. Each
network unit is represented by a box that is labeled with the concept represented by that unit.
Lines that connect the units represent network weights. The thickness of each line indicates
its magnitude, with positive weights drawn as solid lines and negative weights as dashed
lines. Figure 3-19 shows the interface provided by the Lascaux tool.

cup :- stable, liftable, open-vessel
stable :- flat-bottom
liftable :- graspable, light
graspable :- has-handle
open-vessel :- has-concavity, concavity-up

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
45

Figure 3-19. Lascaux Depiction of a Knowledge-based Neural Network
The activation of each unit is depicted by a thermometer-like display. The activation meter
occupies the top portion of each box and the level to which the meter is filled with black
indicates the activation of the corresponding unit. The lower part of the box shows the net
input relative to the �threshold� of the unit. In addition to showing the activation of each
unit, Lascaux can display the error of each hidden or output unit for a particular pattern of
learning.
Lascaux also includes mechanisms for filtering the information that is to be displayed. For
example, a user-settable threshold enables the user to view a subset of the weights of the
network; weights less than a chosen threshold will not be displayed. Another mechanism
allows the user to select units or deselect units for which the weights can be displayed.
Mechanisms such as these are important features of a visualization tool to insure that the user
will not be overwhelmed by the magnitude of the data available for display.
The interface can also depict the forward propagation signals from unit to unit as shown in
Figure 3-20.

Figure 3-20. Activation signals and effective activation functions

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
46

The diagram plots the activation function for a unit on a scale that is defined by the range of
the net input values that the unit could have. Thus, the rightmost edge of the diagram shows
the activation value that would result if the unit were to receive its maximum net input. The
leftmost edge shows the activation that would result if the unit were to receive its minimum
net input. The actual net input that results for a given pattern is displayed as a solid vertical
line in the diagram. This displays the effective activation. It is valuable to describe the
nature of the activation function relative to its weight space and to show the relative
influence of the weights and biases. Lascaux also provides a mechanism to specify a
�freeze� display that lets the user progress step-by-step through a set of input patterns.
Lascaux provides the same functionality whether it is used with conventional ANNs or with
knowledge-based NNs. The tool aids in understanding the refinements that occur during
learning by animating the weight changes. This can help explain why the network has made
a particular decision.
In summary, visualization techniques can provide insight into the workings of a network by
transforming the parameters into more easily understood visual representations.
Although visualizations can help with the understanding of parameters in an NN, the
techniques are still problematic and cannot completely address the aspect of the
high-dimensionality of the spaces that need to be understood. One challenge of future
network visualization work is to develop methods that can succinctly compress these
high-dimensional spaces into easily understood and meaningful representations.

3.2.7 Model Checking
For autonomous software, traditional testing methods fall short because the combinatorial
explosion of input possibilities results in a set of situations too large to be analyzed. Formal
methods of verification become necessary for such software. Through mathematically based
analysis, model checking establishes that the program fulfills formally expressed
requirements. Formal verification techniques based on model checking are able to efficiently
check all possible execution traces of a system in a fully automated way. Given a model of
the system and an expected property of the system, a model checker will run through all
possible executions of the system and report any execution that leads to a property violation.
In the past, manual conversion to the syntax accepted by the model checker was required,
which made the use of these tools tedious and complex. This conversion usually required a
good knowledge of the model checker, and was usually carried out externally by a formal
methods expert instead of the system designer. Translators have been developed
[Pecheur 2000] and new model checkers have immerged [Brat 2000] that make model
checking a more accessible tool.
Two approaches to model checking are:

• Theorem provers � computer supported proof of the requirements by logical
induction over the structure of the program. (Off-line research studies)

• Model checkers � search of all realizable executions of the program for a violation of
the requirements. (On-line automatic)

Formal model checking methods applied in the design phase catch errors early and reduce
maintenance costs later on. Although this is a crucial early step there are arguments for
formal methods to be applied to the programs as well. Programs may contain fatal errors in

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
47

spite of careful design. Modern programming languages are well developed and a result of
good language design principles so they may be good design/modeling languages. Also
formal methods can verify program correctness while debugging and locating errors.
Turning programs into verifiable models allows for model checking of software. First, the
program is translated into the language of the model checker. Then some of the original
system must be �abstracted� away to obtain a model that can be checked in a reasonable time
and space [Pecheur 2000].
Classical explicit model checkers, such as SPIN, generate and explore every single state of
the model. Symbolic model checkers, such as Symbolic Model Verifier (SMV), manipulate
whole sets of states at once. Java Path Finder (JPF) is an explicit model checker that
employs the use of abstraction, static analysis, and runtime analysis in order to alleviate some
of the state-explosion problems. Symbolic model checkers implicitly represent the set of
states as the logical conditions that those states must satisfy. These conditions are encoded
into data structures called Binary Decision Diagrams (BDD). The BDD of the current set of
states is combined with the BDD of the transition relation to obtain the next set of reachable
states. The BDDs provide compact representations and support very efficient manipulations.
Model checking was traditionally applied to hardware systems but is increasingly being
applied to software systems.
In many of the early model checkers, translation from the modeling language, Modeling
Programming Language (MPL), to the language of the model checker was done by hand.
This conversion was a very complex task that could take weeks or months and that usually
needed to be performed by formal methods experts. The running of the verification only
took minutes or hours after the translation was accomplished. The complexity and time-
consuming nature of the translation led to the development of translators from MPL to the
model checker language to automate the process. Pecheur and Simmons developed one such
translator to convert MPL to SMV [Pecheur 2000]. The translator was applied in several
settings within NASA, such as Livingstone, an MPL, model-based diagnosis and recovery
system for the Remote Agent architecture on the Deep Space One spacecraft. Several minor
bugs were found even after the models had been extensively tested by more conventional
means. The translator has also been used at Kennedy Space Center by the developers of the
Livingstone model for the In-Situ Propellant Production (ISPP). The current version of the
ISPP model, with 1050 states can be processed in less that a minute using SMV.
There are now model-checking tools such as Java PathFinder that can be applied to
implementation programs. These tools allow software developers to check their own code
during development. Java PathFinder 1 (JPF1) uses automatic translation from Java to
PROcess MEta Language (PROMELA) the input language for the SPIN model checker.
Java PathFinder 2 (JPF2) is an updated version of JPF1 that handles additional Java language
features [Brat 2000]
While model checking does not prove the correctness of a model it is a good compliment to
testing because it allows for a wider coverage at a lower cost. Referred to as �falsification
method�, it can be used to prove systems wrong rather than right. While model checking is a
powerful and flexible debugging tool that can be used early on in the engineering process it
only addresses validity as an abstraction of a physical system. The most challenging part of
model checking programs is reducing the size of the state space to something the tool can
handle. These programs can be coupled with abstract interpretation, static analysis, and run-

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
48

time analysis to handle this problem. Analytical testing can also be employed and is halfway
between testing and model checking. This intermediate approach would provide better
accuracy of the verification results.
Challenges in model checking include:

• Different kinds of abstractions, discrete, real time, continuous and hybrid model mix.
• Adaptive systems designed to modify behavior dynamically.

Benefits of model checking include:
• Use of the abstract model, rather than the actual code.
• Executes in a highly efficient way using backtracking to explore alternative paths

from common intermediate states.
• Can be applied in early stages of design long before testable implementation is

available.
Limits of model checking include:

• Limited by state-space explosion. Since induction cannot be performed, only systems
of bounded size can be verified.

• The process of abstraction of the model can be time consuming and costly and is
usually performed off-track by V&V experts.

3.3 Summary of Tools
The summary of tools is heavily influenced by the summary of methods. Some of the
methods contain tools, which have already been developed for method application. The bulk
of this summary will contain those tools. A few additional tools discovered during non-
specific searches have also been evaluated. As some tools can be classified into two or more
of the methods, the tool summary is presented in an alphabetical fashion.
Each tool description will try to evaluate the tool across several different criteria. These
criteria include expense, ease of use, translation requirements, automated features, the tool�s
track record and available support to aid in tool usage. To facilitate quick assessment,
Section 4.0 will present each tool�s evaluation in an easy to read table.

3.3.1 HyTech
Website: http://www-cad.eecs.berkeley.edu/~tah/HyTech/
HyTech was developed by Tom Henzinger, Pei-Hsin Ho, and Howard Wong-Toi at the
University of California at Berkeley. This tool is a symbolic model checker for linear hybrid
automata, a subclass of hybrid automata that can be analyzed automatically by computing
with polyhedral state sets.
A hybrid system [Henzinger 1997a] is a dynamical system whose behavior exhibits both
discrete and continuous change. A hybrid automaton is a mathematical model for hybrid
systems, which combines, in a single formalism, automaton transitions for capturing discrete
change with differential equations for capturing continuous change.
A key feature of HyTech is its ability to perform parametric analysis, i.e. to determine the
values of design parameters for which a linear hybrid automaton satisfies a temporal-logic

http://www-cad.eecs.berkeley.edu/~tah/HyTech/

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
49

requirement. In particular, HyTech is an automatic tool for the analysis of embedded
systems. It works by computing conditions under which a linear hybrid system satisfies a
temporal requirement. The HyTech tool provides not only a model checker but also a
parametric analyzer.
The standard reference to the HyTech algorithm is explained in [Alur 1996], and the standard
reference to the HyTech tool is provided in [Henzinger 1997b]. Also available is the HyTech
User Guide [Henzinger 1995], with instructions for installation and usage.
HyTech has been through two major revisions, the final version being written entirely in
C++. A linear hybrid automaton description language for specifying the system to be
evaluated is provided by the tool. Major language components include: variables, locations,
initial conditions, invariant conditions, transitions, and rate conditions.
The analysis of HyTech is based upon symbolic region manipulation techniques first
presented for real-time systems in [Henzinger 1994]. The input file consists of a text file
containing a system description and a list of iterative analysis commands to be performed.
HyTech is freely available from the HyTech website. However, one does need to sign a
license agreement before downloading. Versions exist for UNIX�including Sun OS 5.8,
Solaris 2.3.x, Digital UNIX, DEC Ultrix, and HP-UX�Linux, and Windows. The Windows
version requires use of the Cygwin package that ports UNIX tools to Windows. The tool
developers have provided a user guide to assist in its installation and usage.
Since it was developed for the UNIX environment, HyTech is available as a compressed tar
file that needs to be decompressed and expanded � thus generating the appropriate directory
tree and files. As a command-line program, it accepts various parameters to redirect I/O and
specify the levels of checking and analysis to be performed. However, a compatible
graphical input language for HyTech is available courtesy of the UPPAAL group in Denmark
and Sweden. UPPAAL is discussed in more detail in Section 3.3.17.
Case studies involving usage of the tool included an audio control protocol [Ho 1995], and a
steam-boiler control [Henzinger 1996].
The audio control protocol example demonstrated that:

• HyTech�s symbolic model-checking is expressive: it is not limited to systems with
discrete state spaces�being able to verify infinite state systems with continuous
variables subject to variable rates of change,

• The transmission of arbitrary length messages can be modeled using only finite-state
data information, and

• Timing properties involving arbitrarily large timing constants also can be verified.
The modeling of a steam-boiler control system used hybrid automata. Abstracted linear
models of the nonlinear behavior of the boiler were defined and verified. In particular,
HyTech was able to automatically synthesize control-parameter constraints that guarantee the
safety of the boiler.

3.3.2 Java PathExplorer (JPAX)
JPAX is a runtime verification system for monitoring Java execution traces. It combines
testing with formal methods to leverage the strengths and offset the downside of both. JPAX

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
50

can be used during testing, and can potentially be used during operations to check safety
critical systems. It extracts state events from the target application as it runs, then analyzes
the collection using a remote observer process.
The developers' goal is to make the system as general and generic as possible, handling
multiple languages and allowing user-defined verification rules and specification logics.
[Havelund 2001]. Eventually, JPAX will also be able to monitor subprograms written in C,
C++, and others.
The tool assists in performing two types of verification: logic based monitoring, and error
pattern analysis. Together, the developers state, �JPAX offers a large, if not a full, spectrum
of possibilities for runtime verification� [Havelund 2001].
Logic based monitoring checks the program against the underlying logic expressed by the
user requirements. By using a specification runtime language, a user can create formal
requirements specifications that can be compared against recorded execution traces.
The developers of JPAX chose to use Maude, a modularized specification and verification
system that implements rewriting logic. Maude offered high-performance and the ability to
define new logics including temporal logics such as future time and past time linear logic.
As the type of logic used may vary from system to system, defining new logics in Maude
would be feasible for advanced users but may be unfeasible for IV&V personnel new to this
language. The Maude language is capable of performing 15 million rewritings per second,
and can be used as the monitoring engine that performs the conformance checks using Linear
Temporal Logic (LTL).
Error pattern analysis uses standard language-dependent algorithms to detect typical
concurrency error potentials. Through the use of various algorithms, error pattern analysis
can identify error-prone programming practices, particularly those leading to data race
conditions and deadlocks. Errors need not occur in the test run in order to be detected in a
recorded execution trace of a program. JPAX can evaluate the order and frequency of lock or
semaphore access and determine if these events would lead to future conflict.
For now, JPAX is currently designed to operate on the JAVA run-time language. JPAX
requires two sets of inputs: the Java bytecode (created with the standard Java compiler) and
the specification script defining the analysis. The specification script consists of two parts:
an instrumentation script that defines how the program should be instrumented, and a
verification script that identifies the exact analysis to be performed and, if logic based
monitoring is requested, what properties should be verified. The scripts are written in Java,
which initiates Maude as needed; Java defines the Boolean predicates and distributes the
values of those to Maude for deeper analysis.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
51

Java
Program

Java
Program

BytecodeBytecode

Instrumented
Bytecode

Instrumented
Bytecode Execute

(JVM)

MaudeMaude

D
is

pa
tc

he
r

Ev
en

t
St

re
am

Specifications

Instrumentation Verification

Compile

Instrument

Observer

DeadlockDeadlockDeadlock

DataraceDataraceDatarace

LTLLTLLTL

………

Figure 3-21. JPAX Architecture

There are three modules that make up the JPAX tool. An instrumentation module performs
script-specified automated instrumentation of the target program. Relevant results are sent to
an interconnection module, which forwards them to the observation module that can perform
analysis on the system. Instrumentation is performed using the Compaq bytecode
engineering tool Jtrek, which reads Java class bytefiles, examines their contents while
traversing them as abstract syntax trees, and inserts new code that can access the contents of
a call-time stack at runtime. The contents are transmitted as events to the observer, which
dispatches the events to a set of rules, each rule performing a requested analysis, as shown in
Figure 3-21. Rules may be written in Maude, Java, or C. The only language-specific portion
of the system is the instrumentation module, which can be replaced to set up for a different
language.
Like all runtime programs, JPAX slows normal execution of the program. JPAX relies on
two buffers for monitoring program execution. One buffer stems from the instrumented
program to the observer, and the other from the observer to Maude. The slowdown, the
developers believe, comes from the buffer communication between the observer
implemented in Java and the logic engine implemented in Maude. As a result, one area of
investigation is to devise Java implementations for the most heavily used logics to check
formulae directly against traces, thereby eliminating some communication.
Future developments planned for JPAX:

• Investigate more suitable logics for monitoring (than future time LTL)

• Experiment with new logics in Maude more appropriate to monitoring than LTL,
such as interval and real time logics and UML notations

• Fast implementations of designated logics in more conventional programming
languages than Maude (improving overall monitoring speed)

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
52

• Develop new error pattern analysis algorithms to detect concurrency errors beyond
data races and deadlocks

• Study new functionalities such as guided execution via code instrumentation to
explore more interleavings of a non-deterministic concurrent program during testing.

• Guidance of program during operation once a requirement specification has been
violated

• Dynamic programming visualization.
• More user-friendly interface.

3.3.3 Java PathFinder (JPF) and Java PathFinder 2 (JPF2)
The original JPF application was strictly a translator, converting code from a subset of
Java 1.0 into the PROMELA modeling language for input into the SPIN model checker. JPF
was developed by the Automated Software Engineering (ASE) group at NASA ARC. The
initial JPF had numerous limitations: Translation was restricted to features available in
destination language (PROMELA), so items, such as floating point numbers, could not be
handled. Furthermore, the translation process required the original source code, which might
not be readily available. As stated in Section 3.1.1, JPF did prove its merit when it was used
successfully with SPIN in locating the errors that caused the Remote Agent to hang
[Havelund 2000].
To overcome some of the problems associated with JPF, NASA ARC recreated the tool. The
new iteration of Java Pathfinder, JPF2, is an explicit-state model checker developed to work
directly on Java bytecode. It is capable of model checking all of Java, not just subsets, and
can detect problems that can only be discovered at the bytecode level. Among its strengths is
a customized Java Virtual Machine (JVM) implementation tailored for efficient memory
management, a critical concern when examining a program with many states.
JPF2 consists of two components: a special-purpose Java Virtual Machine (MC-JVM)
tailored for efficient memory management � an important concern since state-explosion can
rapidly consume memory � and a depth-first algorithm. The MC-JVM keeps track of states
that have been visited by storing all new states in a hash table (index). It also maintains the
path of states in a stack to permit navigation. The depth-first algorithm performs the actual
traversal of the state-graph of the program. It instructs the MC-JVM to evaluate the current
invariant, to move forward one step, or to move back one step.
Novel features of JPF2 cited by [Brat 2000] include the following:

• Canonical heap representation - memory is always allocated to the same location as
during previous interleaving

• Garbage collection � to reduce cluttering of memory
• Traps for certain method-calls to return a non-deterministic integer value
• Adjustable atomicity levels (one bytecode instruction, bytecodes for one Java

instruction, bytecodes for one line of Java code, or all bytes within a block of Java
code that are independent to any concurrent code)

• Highly structured program states consisting of a number of Java classes (rather than
traditional, memory-hogging flat, state-vector style of many model checkers).

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
53

JPF2 offers the ability to 1) automate abstraction to convert an infinite-state program into a
finite one; 2) use runtime analysis to locate problem codes; 3) use static slicing to reduce the
program; and 4) launch the model checker to analyze the result.

3.3.3.1 Static Analysis
Static analysis searches the program for �safe� program blocks � that is, standalone blocks of
consecutive Java statements that can be executed together because they only use local data.
JPF2 uses a static slicing tool from the BANDERA toolset (Kansas State University) to
identify program dependencies; the tool automatically extracts slicing criteria for both
sequential and concurrent programs. The static analyzer uses this information to identify the
safe programming blocks that are used by the MC-JVM of JPF2 to compute �mega� steps
(program slices). These mega steps can be safely executed in parallel to provide partial order
reduction and reduce state explosion.

3.3.3.2 Runtime Analysis
Runtime checkers employ algorithms to predict execution traces of the target program that
may violate properties of interest. One of the algorithms used by JPF2 is Eraser, used to
dynamically detect data race conditions in multi-threaded programs. Eraser works by
searching for the absence of locks or semaphores, flags used to indicate that a single piece of
code has sole permission to access some data. A failure could occur should two pieces of
code access data at the same time with one code segment writing the data while the other
reads it. A program would be considered race free if, �for every variable there is a nonempty
set of locks that all threads own when they access the variable. [Brat 2000]� Another run-
time algorithm used analyzes the lock order � checking whether a lock or semaphore can be
taken in different orders by different threads (which can lead to deadlocks from threads that
are waiting for each other to give up their respective lock before they can continue).
While algorithms like Eraser can provide the information to identify the error, the model
checker is the key in analyzing the consequences. Once a race condition is noted, then
JPF2�s special runtime analysis/model checking mode launches a window showing the
threads involved in the race condition. The model checker can then be used to see what
happens when one thread is chosen, with priority over another thread, to analyze the race
condition.

3.3.3.3 Automated Abstraction
An automated abstraction tool that can be used to reduce an infinitely large number of states
to a smaller set also makes up part of JPF2. The user may specify (Boolean) variables to be
removed and/or added, and JPF2 will automatically generate a new Java program using the
new abstract variables and unremoved variables. In this way, the user can abstract
subcomponents of a program too large or complex to abstract in total, or can create new
variables that depend on variables from multiple classes (interclass abstraction). In the
automatic conversion, the tool uses Stanford Validity Checker (SVC) to check the validity of
the logical expressions.

3.3.3.4 Usage and Development
While JPF was used in reviewing the Remote Agent program for errors that caused in-flight
deadlock problems, no literature on the use of its successor, JPF2, appears to exist. This may

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
54

not be the case in the future though; ASE is collaborating with the Advanced Architectures
and Agents Group at Goddard Space Flight Center and Global Science and Technology to
apply JPF2 to analyze satellite downlink protocol [Pecheur 2000].
In 2000, the JPF2 development team was in the final stages of creating a parallel version that
runs on multiple workstations. Other improvements will include extending the program to do
LTL model checking and developing a more flexible specification for Java [Brat 2000].

3.3.4 KRONOS
Website: http://www-verimag.imag.fr/PEOPLE/Sergio.Yovine/kronos/index.html
KRONOS is a verification tool for real-time systems, developed at VERIMAG (http://www-
verimag.imag.fr/), an academic laboratory focusing on the theoretical and practical aspects of
formal methods for software engineering.
KRONOS was developed for the verification of complex real-time systems. Such systems are
often part of complex safety-critical applications such as aircraft avionics. While these high
assurance systems are very difficult to design and analyze, their correct behavior must be
ensured because failures may result in severe consequences. The goal of KRONOS is to
formally prove their correctness with respect to the desired requirements.
In KRONOS, components of real-time systems are modeled by timed automata. Timed
automata are automata extended with a finite set of real-valued clocks, used to express timing
constraints. The correctness requirements are expressed in the real-time timed computation
tree logic (TCTL). TCTL, proposed by Alur in 1991 [Henzinger 1992], is a timed extension
of the well-known temporal logic called Computation Tree Logic (CTL) which was itself
proposed by Clarke and Emerson in 1981. TCTL allows quantitative temporal reasoning
over dense time.
KRONOS checks whether a timed automaton satisfies a TCTL-formula. The model-checking
algorithm is based upon a symbolic representation of the infinite state space by sets of linear
constraints.
Timed automata are finite-state machines equipped with a set of variables, called clocks, that
measure the elapsed time between events. The automaton models the behavior of a process
or component of the system. The locations of the automaton correspond to various points in
the process. Finally, transitions between locations correspond to the execution of statements.
Clocks can be set to zero and their values increase uniformly with time. At any instant the
value of a clock is equal to the time elapsed since the last time it was reset. A transition is
enabled only if the timing constraint associated with it is satisfied by the current values of the
clocks.
A system in KRONOS is specified as a set of files, say com-1.tg, com-2.tg, �, com-n.tg with
each specifying the behavior of one component. The major features of a system�s behavior
are global states and global evolutions.

• Global states�a global control location is an m-tuple of locations of the system�s
components. At a given moment in time, the global state is determined by this
control location and the values of the clocks of all the components.

• Global evolutions�the system changes between global states by allowing time to
elapse, or by execution of a transition.

http://www-verimag.imag.fr/PEOPLE/Sergio.Yovine/kronos/index.html
http://www-verimag.imag.fr/)
http://www-verimag.imag.fr/)

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
55

! Time passing�all components must agree in the amount of time that can elapse.
! Execution of transitions�the global location of the system changes when a single

component executes a transition, or if a subset of components executes
synchronized transitions.

! Product automaton�the essence of the system�s behavior is described by a single
timed automaton.

KRONOS provides a specification framework that integrates both logical and behavioral
approaches to verification. The correctness criteria may be specified using either approach.
For the logical approach, formulas of the timed temporal logic are used with model-checking
algorithms to check whether the systems satisfies a property represented by a TCTL formula.
The logical approach facilitates the analysis of various classes of properties. Examples of
properties amenable to the logical approach include reachability, non-Zenoness, and bounded
response. Reachability, an example of a safety property, is used to verify that a system never
can achieve an unsafe state. Bounded response describes the real-time character of the
system: �Can events from the system�s environment be responded to in a bounded time
interval?� Non-Zenoness concerns the divergence of time: �Can the system reach a state
where time converges, called Zeno, effectively stopping the flow of time?� Satisfying safety
criteria by stopping the flow of time is clearly unacceptable.
For the behavioral approach, KRONOS provides an algorithm that constructs an automaton
in which time is abstracted away but the causality relationship is preserved. This facilitates
the generation of behavioral equivalences, which have proven quite useful in the verification
of concurrent systems.
KRONOS has been under development since 1994. The last version of the product (version
2.2b) was released in 1998. KRONOS was developed for a SUN Solaris 2.5 environment.
KRONOS is distributed free of charge to academic institutions for non-profit use. A user
guide for KRONOS is available.
KRONOS has been used successfully on real-time systems modeled in several process
description formalisms, including: ATP [Nicollin 1992], AORTA [Bradley 1995],
ET-LOTUS [Daws 1995], and T-ARGOS [Jourdan 1993].

3.3.5 LOTOS
The Language Of Temporal Ordering Specification (LOTOS) is a formal description
technique developed at Twente University in the Netherlands. The International
Organization for Standardization (ISO) recognizes it as ISO/IEC 8807.
LOTOS is a language with a high level of abstraction and a strong mathematical basis. It is
used for the description and analysis of non-deterministic, complex systems. It consists of
two complementary and independent parts:

• The data part is based on the Act One specification and is used to model data
structures and value expressions (http://www.run.montefiore.ulg.ac.be/Research/
index.php?topic=Lotos).

• The control part is based on a combination of Communicating Sequential Processes
(CSP) and Calculus of Communicating Systems (CCS) [Pecheur 1997] and is used to

http://www.iso.ch/cate/d16258.html
http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
56

model dynamic behaviors of systems http://www.run.montefiore.ulg.ac.be/
Research/Topics/index.php?topic=Lotos)

The University of Sterling undertook the Specification and Prototyping with LOTOS for an
Interactive Customer Environment (SPLICE) project in the early 1990s. One aspect of that
project examined how LOTOS could be used to specify a trained perceptron NN. If it could
describe the network behavior without the need for execution, it could not only improve
customer understanding of the network, but also be a tool for automatic system
documentation [Gibson 1993].
A number of tools exist to support specification, verification and code generation using
LOTOS (http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos).
Some popular tools are Cæsar Aldébaran Development Package (CADP), TRAIAN,
Graphical LOTOS Animator (GLA), Graphical LOTOS Designer (GLD), Toolset for Product
Realization with LOTOS (TOPO), SyMbolic Interactive Lotos Execution (SMILE), and
European/Canadian LOTOS Protocol Tool Set (EUCALYPTUS). However, an introductory
view of the language is obtained from a table of the main LOTOS operators presented by
Pecheur [Pecheur 1997] in Table 3-9.

Table 3-9. Main LOTOS operators

Representation Explanation

stop An interactive behavior (like 0 in arithmetic).

G !V ?X:S; B Interact on gate G, sending V and receiving a value of sort S in X, and
then behave as B (other input/output combinations are possible).

B1 [] B2 Behave as either B1 or B2, whichever does something first.

[E] -> B If E is true then behave as B.

B1 |[G1,…,Gn]| B2 B1 in parallel with B2, synchronized on gates G1,…,Gn (||| means no
synchronization, || means full synchronization).

hide G1,…,Gn in B Make actions of B on gates G1,…,Gn invisible from outside.

exit Successful termination.

B1 >> B2 B1 followed by B2, when B1 terminates successfully.

B1 [> B2 Behave as B1 until either B1 terminates or B2 performs its first action;
in the latter case B1 is discarded.

P [G1,…,Gn] (V1,…,Vm) Call process P with gate and value parameters G1,…,Gn and
V1,…,Vm.

Since most LOTOS users employ a tool, the computational requirements and setup for
LOTOS is tool dependent. Consequently, each tool will vary in its ease of use, cost, support,
and automation. However, support and background on LOTOS itself is available through
many Internet websites and user discussion groups, such as
http://www.cs.stir.ac.uk/~kjt/research/well/.

http://www.run.montefiore.ulg.ac.be/�Research/Topics/
http://www.run.montefiore.ulg.ac.be/�Research/Topics/
http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
57

3.3.6 MATLAB NN Toolbox
The MATLAB NN toolbox is an additional software package for MATLAB that provides
functions, utilities, and help for creating and training NNs. Its usefulness in regard to the
verification and validation of NNs lies with simulation and visualization.
The tool allows for construction of most types of NNs and even provides special utilities for
back-propagation networks, radial basis functions, SOMs, and recurrent networks. Once in a
model within MATLAB/Simulink, the network can be trained, tested, simulated, and studied.
Since MATLAB was designed as a mathematical analysis tool in general, data anywhere in a
network is easily accessible for viewing and further manipulation. This means the data is
available for analysis utilities like interpolation, statistical analysis, equation solvers,
optimization routines, and any of the other powerful MATLAB functions. A system analyst
can plot the training error function, watch the change in the weight matrix, and get real-time
network outputs to verify their correctness.
The toolbox can be used in both MATLAB and Simulink.
With MATLAB, a user has a C like environment in which to code an NN model. A tester
can make use of provided NN toolbox functions, or create their own based upon their specific
application. Data to train a network can be imported from several different file formats and
the results, like the network training error, can be easily plotted to the screen or saved for
later use.
Simulink differs from MATLAB in that it provides a graphical means of programming by
making use of blocks, connectors, and menus to control how models behave within the
Simulink.
Users can choose from a wide variety of components for use in graphical design. The default
Simulink blocks offer 12 different transfer functions, but users can create their own or add in
blocks provided by others. Some of the possible transfer functions include hard-limit, linear,
and Gaussian activations. A user constructing a graphical simulation also has blocks
representing the neuron input functions (such as summation or dot product) and basic
functions for application of network weights. An example of the construction of a two-
layered, single-input, single-output, feed-forward back-propagation network in MATLAB is
shown in Figure 3-22.
Using the Simulink aspect of the toolbox is fairly straightforward; a programmer simply
drags and drops desired components, and then connects the different Simulink blocks to
create the model. From within the Simulink menu, simulation parameters such as timing,
control over data input and data output, and diagnostics can be configured. Just as with
MATLAB, Simulink can display results from anywhere within the model to the screen as
data plots. Furthermore, networks built in MATLAB are easily converted to Simulink via
MATLAB functions (gensim, for example). Figure 3-23 shows the network in Figure 3-22
converted to Simulink.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
58

>> net = newff([0 1],[5 1]);
>> gensim(net);
>> net
net =

 Neural Network object:

 architecture:

 numInputs: 1
 numLayers: 2
 biasConnect: [1; 1]
 inputConnect: [1; 0]
 layerConnect: [0 0; 1 0]
 outputConnect: [0 1]
 targetConnect: [0 1]

 numOutputs: 1 (read-only)
 numTargets: 1 (read-only)
 numInputDelays: 0 (read-only)
 numLayerDelays: 0 (read-only)

 subobject structures:

 inputs: {1x1 cell} of inputs
 layers: {2x1 cell} of layers
 outputs: {1x2 cell} containing 1 output
 targets: {1x2 cell} containing 1 target
 biases: {2x1 cell} containing 2 biases
 inputWeights: {2x1 cell} containing 1 input weight
 layerWeights: {2x2 cell} containing 1 layer weight

 functions:

 adaptFcn: 'trains'
 initFcn: 'initlay'
 performFcn: 'mse'
 trainFcn: 'trainlm'

 parameters:

 adaptParam: .passes
 initParam: (none)
 performParam: (none)
 trainParam: .epochs, .goal, .max_fail, .mem_reduc, .min_grad,
 .min_grad, .mu, .mu_dec, .mu_inc, .show, .time

 weight and bias values:

 IW: {2x1 cell} containing 1 input weight matrix
 LW: {2x2 cell} containing 1 layer weight matrix
 b: {2x1 cell} containing 2 bias vectors

Figure 3-22. Example NN in MATLAB

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
59

1

a{2}tansig1tansig netsum1netsum bias

b{2}

bias

b{1}

weight

LW{2,1}

weight

IW{1,1}

1

p{1}

Figure 3-23. Example NN in Simulink

The NN toolbox installs directly into MATLAB/Simulink. It�s available for many of the
common operating systems, such as all versions of Windows, Linux, UNIX, and Macintosh.
While the NN toolbox requires a MATLAB license, it has powerful features only available
with an existing Simulink license. System testers may appreciate the ease of drawing a NN
model to simulate and study a particular system as opposed to importing or re-coding the
network into MATLAB.
Mathworks, the developer of MATLAB and Simulink, provides a manual for use with the
tool, which includes an introduction to NNs and how they can be used. Anyone familiar with
the C programming language should find working in MATLAB m-file scripts
straightforward. The conventions that MATLAB uses are very close to C and for situations
where a system tester wants to do a direct translation of a NN programmed in C, MATLAB
offers a C import utility.
The toolbox has been used across a wide range of applications. For the IFC program, the
ISR has placed all NNs inside MATLAB m-files and Simulink models.
Mathworks provides good technical support and because of the wide usage of MATLAB,
there are several websites from users who have developed their own extensions to this tool
and offer their own user stories.

3.3.7 Murphi – or Murϕϕϕϕ
Website: http://sprout.stanford.edu/dill/murphi.html
The Murphi description language is based on a collection of guarded commands
(condition/action rules), which are executed repeatedly in an infinite loop. This approach is
borrowed from J. Misra and K.M. Chandy's Unity model [Misra 1988].
The data structures and guarded commands include well-known data types: subranges,
enumerated types, arrays, and records, as well as some new types for improving the
efficiency of verification. The new data types include the Multiset, for describing a bounded
set of values whose order is irrelevant, and the Scalarset for describing a subrange whose
elements can be freely permuted.
Murphi also provides a formal verifier based on explicit state enumeration. The verifier
performs depth- or breadth-first searches in the state graph defined by a Murphi description,
storing all the states it encounters in a large hash table. When a state is generated that is
already in the hash table, the search algorithm does not expand its successor states�as they
previously were expanded when the state was originally inserted in the table.

http://sprout.stanford.edu/dill/murphi.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
60

Source code, some executables, documentation, and extensive verification examples are
available for Murphi�all as freeware, with very liberal licensing terms. Murphi runs on
various versions of UNIX and Linux. The compressed tar file is available at the Murphi
Website.
Murphi has been used for the following verification tasks:

• Verification of the cache coherence protocols in Stanford's DASH and FLASH
multiprocessors.

• Verification of link-level protocol and cache coherence protocol in Sun's S3.mp
multiprocessor.

• Verification of the cache coherence algorithm in Sun's UltraSparc-1.

• Executable specification, analyzer, and verifier for Sparc V9 memory models: TSO,
PSO, and RMO.

• Incorporated into University of Wisconsin's Tempest customizable cache coherence
protocol system.

• Verification of part of SCI ("Scalable Coherent Interface"), IEEE Std 1596-1992.
Some bugs were discovered.

• Analysis of cryptographic and security-related protocols.

• Verification of proprietary protocols at several companies, including Fujitsu, HAL
Computer Systems, HP, and IBM.

Cmurphi is another version of Murphi that optionally uses state space caching to speed its
performance. Its compressed tar file also is available at the Murphi website.
Parallel Murph, a parallel version of Murphi also has been developed for distributed memory
multiprocessors and networks of workstations. In experiments with three complex cache
coherence protocols, the parallel Murphi showed close to linear speedups. Since the state
table is partitioned over the parallel machine, the algorithm also allows the verification of
larger protocols.

3.3.8 PARAGON
Process-algebraic Analysis of Real-time Applications with Graphics-Oriented Notation
(PARAGON) is a toolset developed by the Real-Time Systems Group at the University of
Pennsylvania for visual specification and verification of distributed real-time systems. It
contains:

• A graphical editor for the Graphical Communicating Shared Resources (GCSR)
specification language.

• A visual simulator for GCSR specifications.
• XVERSA, a graphical user interface to Verification, Execution and Rewrite System

for ACSR (VERSA), a verification tool for Algebra of Communicating Shared
Resources (ACSR) specifications.

• Translators between GCSR and ACSR.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
61

Figure 3-24 shows the overall structure of the PARAGON system. The VERSA system
provides the verification back-end. It offers state exploration capabilities and checking
equivalence of two specifications. XVERSA provides a graphical user interface to the
analysis functions of VERSA. GCSR was designed to make the specification language used
in both VERSA and XVERSA easy to understand and maintain.

GCSR Tool Set
GCSR-to-ACSR

 XVERSA

 X-Windows Interface

VERSA

Text-Based Interface

Term

Rewriting

State Space

Exploration

Equivalence

Testing

Interactive

Execution

Figure 3-24. The PARAGON Toolset
PARAGON has several extensions associated with it that are designed to interoperate with
PARAGON, or use compatible languages and share "look-and-feel.� These extensions
include:

• Probabilistic ACSR (PACSR), a formalism that associates a probability of failure
with every resource.

• The LCSR tool is a model checker based on a graphical version of modal µ-calculus
extended with resource modalities. LCSR uses ACSR specifications as input and can
be used as an alternative back-end verification tool for PARAGON
(http://www.cis.upenn.edu/~lee/paragon.html).

PARAGON is implemented in C++ and X/Motif, with the help of Lex and Yacc compiler
construction tools and the LEDA class library to enhance portability. All major components:
editor, simulator and the analysis toolkit are implemented as separate UNIX processes and
can be used as stand-alone tools (http://www.cis.upenn.edu/~lee/paragon.html).
Information regarding PARAGON was published in the mid to late 1990s; however, its lack
of use made the availability of this information sparse. Interested parties were encouraged to
obtain a free version of the toolset and information by contacting the authors Lee or
Sokolsky.

3.3.9 PAX
PAX is a tool designed for the verification of parameterized systems. In particular, PAX
allows one to verify parameterized networks of finite state processes.
The underlying method of PAX is based on three main ideas. First, PAX can model an
infinite family of networks by a single WS1S (Weak Second-order theory of 1 successor)
transition system whose variables are set (2nd-order) variables and whose transitions are
described in WS1S [Buchi 1960]. Second, PAX presents methods that allow one to abstract a
WS1S system into a finite state system that can be model-checked. Third, to verify liveliness

http://www.mpi-sb.mpg.de/LEDA/leda.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
62

properties, PAX enriches the abstract system with strong fairness conditions while preserving
safety of the abstraction.
PAX is an integration meta-tool that performs its tasks in the verification process by linking
with other V&V tools:

• MONA (http://www.brics.dk/~mona/) - decides WS1S formula and generates
automata for satisfying and falsifying interpretations

• SPIN (http://www.netlib.no/netlib/spin/whatispin.html) - serves as a LTL model
checker

• SMV (http://www.cs.cmu.edu/~modelcheck/) - checks safety properties

• NuSMV (http://afrodite.itc.it:1024/~nusmv/) - also can be used as a LTL model
checker

• Graphviz (http://www.research.att.com/~north/graphviz/) - supports visualization of
abstract state graphs

PAX is a text-file based system in which the following files are created with a plain text
editor. The sys.init file contains a formula (in correct MONA syntax) characterizing the
initial states of the system. The sys.trans file contains the list of concrete transitions (as
MONA formula over the concrete pre- and post-variables) together with a unique name. The
sys.sdesc contains the basic skeleton of the system. The specification may include macros
and predicates, together with some common parts of the transitions. In particular, four
comment lines must exist, giving positions on which the abstraction relations, the initial
states, and transition formulae can be inserted.
The PAX input files are processed by PAX to create an input file to MONA that describes
one abstract transition. The abstract pre- and post-variables occur free, such that MONA
constructs an automaton accepting the satisfying interpretations. PAX then uses that
automaton to compute the abstract transitions.
The use of PAX involves the following steps (where sys stands for the name of the system to
being verified):

• Create the input files sys.init, sys.sdesc, sys.trans, and sys.pvars. They specify the
system and the abstraction relation.

• Compute the abstract system, comp_abstract_trans sys.

• Make a reachability analysis, ss++ sys, whereas as2spin sys, resp. as2smv sys,
constructs a PROMELA, resp. SMV, program for the abstract system.

Verification consists of different steps, dependent on the type of abstraction that is used.
• For proving safety properties, it is sufficient to run the state space exploration after

construction of the abstract system. When the safety property is part of the
abstraction, it should evaluate in all abstract states to true. ss++ returns a file
sys.PAX-states where all reachable abstract states are listed. If there is a state
falsifying the safety variable, the parameterized system does not satisfy the property
or the abstraction is too coarse.

http://www.brics.dk/~mona/
http://www.netlib.no/netlib/spin/whatispin.html
http://www.cs.cmu.edu/~modelcheck/
http://afrodite.itc.it:1024/~nusmv/
http://www.research.att.com/~north/graphviz/

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
63

• For proving individual properties, the program as2spin (or as2smv) can be used to
transform the abstract transitions and the initial condition into a PROMELA (or
SMV) program. Methods can be used to add fairness requirements to the abstract
system that are guaranteed to hold in the concrete system. Then SPIN (or NuSMV)
can then be used to prove the property of interest.

PAX has been applied to both asynchronous and synchronous algorithms.
• Asynchronous algorithms
! Szymanski's mutual exclusion algorithm: Safety
! Szymanski's mutual exclusion algorithm: Liveness
! Pnueli's modified version of Szymanski's algorithm
! Simplification of Dijkstra's mutual exclusion algorithm
! Dijkstra's mutual exclusion algorithm
! Cache Coherence Protocols

• Synchronous algorithms (time-triggered)
! Simple Fault Detection
! Group Membership Protocol

The PAX Web site, located at http://www.informatik.uni-kiel.de/~kba/pax/, provides links to
papers and documentation for PAX.

3.3.10 Planview/Comview
Reid Simmons and Gregory Whelan developed two software validation tools, Comview and
Planview, to facilitate human problem solving by using graphics and color to present a
�gestalt� view of system execution and interactive facilities for browsing, searching, and
tracking down potential problems [Simmons 1997]. Both tools operate by parsing log files
and provide examples of system runtime monitors.
Typically, autonomous software, such as RA, uses a concurrent, distributed software
architecture that coordinates actions and exchanges information using message passing.
Validating and debugging such software can be extremely difficult because subtle flaws in
modular interface design may manifest themselves only during system integration. A critical
validation test is whether the system responds to stimuli appropriately and in a timely
fashion. Faulty algorithms or bottlenecks are two areas of concern.
The two tools parse log files produced during system execution and present data in
�intuitively understandable formats.� Comview displays patterns of interprocess
communication and helps to identify when messages are sent, to whom, and where
bottlenecks occur. Planview visualizes execution plans (command sequences) and
propagates temporal constraints between plan segments to detect violations that signal
potential plan failures. Both are implemented with the Tcl/Tk library. The log file parser is
written using lex and yacc. A small portion of the tools is written directly in C.
Comview lays out information in a Gantt chart format, where each module (process or task)
is displayed on a separate row, and each rectangle on a row indicates a message received by
that module. This is shown in Figure 3-25. The width of the rectangle represents the relative

http://www.informatik.uni-kiel.de/~kba/pax/

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
64

time spent by the module in handling the message. The color of the rectangle indicates
whether the module is sending or receiving messages, or waiting for a response. The thin
orange bars above the message rectangles indicate when the messages are queued. The
layout makes it easy to spot modules that are over/under utilized, where bottlenecks occur,
and, if there are regular patterns to the messages, the anomalies stand out.

Figure 3-25. The Comview Tool
The tool also provides a hierarchical view. When a module receives a message, it often
sends additional messages in response, which are handled and trigger other messages to be
sent. This trail is presented as an invocation tree (Figure 3-26), which shows message flow
patterns in a visual representation and allows deviations to be spotted.

Figure 3-26. A Hierarchical View

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
65

If a problem area has been identified, Comview offers features to interactively examine
message flow. When a message rectangle is selected from the screen, the communication
flow is displayed graphically with an arrow pointing from sender to receiver, and the
corresponding line in the log file is highlighted. If the message is queued, the screen displays
when it was first sent and when it was eventually handled. Messages can be searched for
name, source or destination module, time of message, or content of the message data.
Additional display features include rearranging rows, ignoring display of message subsets,
zoom and scroll, and change of mappings between message status and colors.
Most autonomous systems have a three-layer architecture:

• A behavioral/real-time layer.
• An executive/sequencing layer.
• A planning layer.

One important aspect in validating an executive is demonstrating that it executes plan
segments at the appropriate time and in the appropriate sequence.
Planview was developed to provide that capability for the RA. This executive layer uses a
plan representation based on timelines and tokens. A timeline represents the evolution of a
state variable (for example, the state of the main engine) over time. The timeline consists of
a contiguous sequence of tokens, which represent the value of the state variable over some
time interval (for example, the main engine is thrusting).
Tokens have expected duration, start and end times. They may have temporal constraints
between them (for example, Token 1 must end before Token 2 begins). The RA executive�s
task is to achieve the state values associated with the tokens while respecting their temporal
constraints and time windows. Faults occur when the executive cannot achieve a token
within its specified temporal window. Planview detects violated constraints and helps to
track down root causes.
Each row in the Planview display represents one timeline, and each rectangle is a token
(Figure 3-27). The position and size of the token indicates when it started and ended (or
when it is expected to start and end, if it is in the future). The color represents its status
(active, completed, violated, etc.) By selecting a token, textual information is presented in
separate windows. Selecting a temporal constraint in the text window causes the constraint
to be displayed in the graphical window.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
66

Figure 3-27. The Planview Tool
As Planview processes the log file, token rectangles change in color, size, and location. It
automatically propagates the temporal constraints through the token structure, thereby
detecting faults such as when a constraint is violated or start or end times are projected to fall
outside the respective window. Faults are flagged by changing the color of the affected
tokens and by highlighting the affected constraints and/or time windows in the textual
display.
The interactive browsing of Planview allows users to follow the chain of constraints
manually. The developers also created a facility that automatically generates English
language explanations of constraint violations. By selecting a line in the explanation
window, the constraint and tokens are highlighted in the graphical display. Planview
generates an explanation by annotating which constraints were used for propagation, and
then uses those annotations to form a tree of dependencies between tokens. The process is
dynamic, so new information and constraints result in updated explanations.
For portability, maintainability, and ease of development, the tools are implemented using
standard software packages. The tools are automated using the interprocess communications
package to log message traffic. Data that is logged includes indication of source and
destination modules, when the message is sent, the data sent with the message, how long the
message was queued, and how long the receiving module took to handle the message.
Comview was applied to the Deep Space One software system to identify an unstable control
loop, which was caused by a module making decisions based on old data. The software was
also used to detect a delay in propagating current data. A certain module was keeping an
internal queue, and it was not flushing the queue, but rather sending out only the first element
of the cycle. Comview was used to document times when the assumptions were violated.
The Planview tool was designed to provide the capability for demonstrating that the New
Millennium RAX executes its plan segments at appropriate times and in the appropriate
sequence.
The Planview tool is no longer in use according to Reid Simmons, but the Comview tool is
available as part of the InterProcess Communication (IPC) distribution. IPC provides high-

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
67

level support for connecting processes using TCP/IP sockets and sending data between
processes. It takes care of opening sockets, registering messages, and sending and receiving
messages, including both anonymous publish/subscribe and client/server type messages. The
IPC library contains functions to (1) marshal (serialize) and unmarshal (de-serialize) data, (2)
handle data transfer between machines with different Endian conventions, (3) invoke user-
defined handlers when a message is received, and (4) invoke user-defined callbacks at set
intervals. IPC uses the more efficient UNIX sockets when processes are on the same
processor and does byte swapping only when necessary. IPC now supports multi-threaded
applications (although currently, it has only been tested under Linux).

3.3.11 PVS
Prototype Verification System (PVS), which is available from SRI International, provides
mechanized support for formal specification and verification. PVS is mainly intended for the
formalization of requirements and design-level specifications, and for the analysis of intricate
and difficult problems. It has been chiefly applied to algorithms and architectures for fault-
tolerant flight control systems, and to problems in hardware and real-time system design.
PVS consists of a specification language, a number of predefined theories, a theorem prover,
various utilities, documentation, and several examples that illustrate different methods of
using the system in several application areas. PVS exploits the synergy between a highly
expressive specification language and powerful automated deduction. For example, some
elements of the specification language are made possible because the typechecker can use
theorem proving. This distinguishing feature of PVS has allowed efficient treatment of many
examples that are considered difficult for other verification systems.
The specification language of PVS is based on classical, higher-order logic. The base types
include uninterpreted types that may be introduced by the user, and built-in types such as the
Booleans, integers, reals, and the ordinals up to epsilon_0; the type-constructors include
functions, sets, tuples, records, enumerations, and recursively-defined abstract data types,
such as lists and binary trees. Predicate subtypes and dependent types can be used to
introduce constraints, such as the type of prime numbers. These constrained types may incur
proof obligations during type checking, but greatly increase the expressiveness and
naturalness of specifications. In practice, the theorem prover discharges most of the
obligations automatically. PVS specifications are organized into parameterized theories that
may contain assumptions, definitions, axioms, and theorems. Definitions are guaranteed to
provide conservative extension; to ensure this, recursive function definitions generate proof
obligations. Inductively-defined relations are also supported. PVS expressions provide the
usual arithmetic and logical operators, function application, lambda abstraction, and
quantifiers, within a natural syntax. Names may be freely overloaded, including those of the
built-in operators such as AND and +. Tabular specifications of the kind advocated by Parnas
are supported, with automated checks for disjointness and coverage of conditions. An
extensive prelude of built-in theories provides hundreds of useful definitions and lemmas;
user-contributed libraries provide many more.
The PVS theorem prover provides a collection of powerful primitive inference procedures
that are applied interactively under user guidance within a calculus framework. The primitive
inferences include propositional and quantifier rules, induction, rewriting, and decision
procedures for linear arithmetic. The implementations of these primitive inferences are

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
68

optimized for large proofs: for example, propositional simplification uses BDDs, and auto-
rewrites are cached for efficiency. User-defined procedures can combine these primitive
inferences to yield higher-level proof strategies. Proofs yield scripts that can be edited,
attached to additional formulas, and rerun. This allows many similar theorems to be proven
efficiently, permits proofs to be adjusted economically to follow changes in requirements or
design, and encourages the development of readable proofs. PVS includes a BDD-based
decision procedure for the relational mu-calculus and thereby provides an experimental
integration between theorem proving and CTL model checking.
PVS 3.0 is currently available only for Sparc machines with Solaris 2 and Intel x86 Machines
with Linux compatible with Redhat 5 or later. The system is freely available under license
from SRI International. PVS uses Gnu or X Emacs to provide an integrated interface to its
specification language and prover. Commands can be selected either by pull-down menus or
by extended Emacs commands. Extensive help, status-reporting and browsing tools are
available, as well as the ability to generate typeset specifications (in user-defined notation)
using LaTeX. Proof trees and theory hierarchies can be displayed graphically using Tcl/Tk
(Figure 3-28). PVS is a large and complex system and it takes a long time to learn to use it
effectively. One should be prepared to invest six months to become a moderately skilled user
(less if one already knows other verification systems; more, if one needs to learn logic or
unlearn Z). There are manuals, tutorials, and help available on the SRI International PVS
website, http://pvs.csl.sri.com/.

Figure 3-28. PVS Screen Shot
Collaborative projects involving PVS are ongoing with NASA and several aerospace
companies; applications include a microprocessor for aircraft flight-control, diagnosis and
scheduling algorithms for fault-tolerant architectures, and requirements specification for

http://pvs.csl.sri.com/

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
69

portions of the Space Shuttle flight-control system. PVS has been installed at hundreds of
sites in North America, Europe, and Asia. Currently, work is being done to develop PVS
methodologies for highly automated hardware verification (including integration with model
checkers), and for concurrent and real-time systems (including a transparent embedding of
the duration calculus).

3.3.12 Real-Time Software Testing Tool Suite
Also known as Dr. Yann-Hang Lee�s tool, the Real-Time Software Testing Tool Suite was
developed for NASA IV&V under the OSMA program. It is a two-stage approach to
minimize temporal interference during testing analysis [Lee 2000]. The first stage records
interactions with the embedded environment and in the second stage replay allows
deterministic execution combined with program instrumentation. The tool employs a
deterministic replay mechanism that can insert unlimited volume of program instrumentation
codes in tested real time software while guaranteeing the same behavior. It does this by
logging program events that can be re-applied during program execution to replicate prior
program behavior.
The software instruction counter has a weakness of intolerable probe effect overhead for real-
time systems, from 10% to 20%. The author has developed an enhanced software instruction
counter (ESIC) that reduces the probe effect overhead. This enhanced software instruction
counter is coupled with XSuds software testing tool suite (Telecordia) used for cover
analysis. While this run-time monitoring tool is not currently being used to test NNs, the
developer believes that it may be able adapted for such a purpose.
The target platforms include Wind River�s VxWorks operating system and the PowerPC
architecture. The host platform uses Microsoft Visual C++, XSuds, and MS Windows NT.
The implementation can be applied easily to other platforms.
The instruction counter that tracks software operation is one method that can reproduce exact
behaviors when replaying the real-time applications. The new method Dr. Lee proposes
reduces the probe effect by distinguishing between non-deterministic scope (NDS) and
deterministic scope (DS) regions of the program by analyzing the source code. This allows
for the removal of the record and replay instrumentation codes from the DS regions to reduce
the probe effect overhead. All high-level language constructs such as while, for, if-then-else,
and assignment will be tagged as either a non-deterministic language construct (NDLC) or a
deterministic language construct (DLC). After classifying all language constructs in the
program, scope analysis is done and the program is partitioned into non-deterministic scope
(NDS) and deterministic scope (DS). This is illustrated in Figure 3-29.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
70

Figure 3-29. Language Construct Classified and Scope Analyzed Abstract Syntax Tree
A proof of the correctness of the ESIC method shows that the behavior of real-time software
is not changed in replay mode execution.
The tool suite is composed of four functional units:

1. The Program Analyzer distinguishes between DS and NDS regions of the program. It
is composed of a
! Parser for syntax and semantic analysis,
! Language construct classifier that classifies every statement as either DS or NDS,
! Scope analyzer that partitions the code into DS and NDS and inserts scope marks

for the ESIC record and replay, and a
! Code generator that outputs the program source including scope marks.

2. The Enhanced Software Instruction Counter (ESIC) Record- and Replay-
Instrumenter parses the assembly output from the program analyzer and puts record
instrumentation codes before the three types of branch instructions. Replay
instrumentation inserts replay codes into the program in the NDS regions. ESIC has
been developed for the PowerPC platform. It is a second-pass PowerPC assembly
translator. It reads the assembly file line by line and makes a symbol table that stores
labels and their corresponding location. The assembly operation of backward branch
is ESIC instrumented. Then it reads the assembly file again and searches for
backward branch, jump, and subroutine calls. As illustrated in Table 3-10, the ESIC
inserts record or replay codes before and/or after the found instructions.

While_statement

TRUE CompoundStatement

SLEEP

10
While_statement

PostfixExpr
<

j 100 j ++

ASSIGN

j 0

NDLC

NDLC

NDLC

DLC

DLC

DLC

DS

DLC

StatementExpr DLC

StatementExpr DLC

StatementExpr

PostfixExpr

FuntionCallArgs

NDLC

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
71

Table 3-10. Record- and Replay- Instrumentation Examples

3. The Event Logger and Replayer History Log File Converter is composed of Software
Instruction Counter (SIC), Program Counter (PC), and event-specific information. It
matches program counters between record- and program- & replay- instrumented
codes using all available information such as linkage map file, linking format, etc.

4. The Software Testing Program Instrumentation uses the events logged in execution to
replay the application deterministically. With the exact mapping of the logged
temporal and spatial location of the events, post-software analysis is achieved.

The tool is being developed to test real-time systems and attempts to limit overhead by using
the ESIC method for record and replay. The tool is still in development stages and is not
available for distribution at this time.

3.3.13 RULEX
RULEX is a tool which can extract symbolic �if...then� rules by analyzing the underlying
structure of a specific kind of back-propagation NN. The goal is to use these symbolic rules
to provide insight into the decision making process of the network.
RULEX is more suited to fixed NNs. It might also be useful for networks undergoing
training that can be held static between training sessions. This could be done to ensure the
network is tending towards a correct operation. RULEX would not be very useful for
quickly adapting systems.

Instruction without condition codes Record- and replay- instrumented code

label:
 …
 bla sub1
 …

label:
 …
 subi r14,r14,1
 cmpwi r14,0
 bne .LESIC_001
 bla esic_handler
.LESIC_001:
 bla sub1
 …

Instruction with condition codes Record- and replay- instrumented code

label:
 …
 bge label
 …

label:
 …
 blt .LESIC_001
 subi r14,r14,1
 cmpwi r14,0
 bne .LESIC_002
 bla esic_handler
.LESIC_002:
 b label
.LESIC_001:
 …

IVVNN-LITREV-F002-UNCLASS-111202

RULEX works as a decompositional rule extraction tool, analyzing the network neuron-by-
neuron to construct the symbolic rules. These symbolic rules take the form of:

The R
specif
The h
The n
(LRU
Each u
The L
of the
an LR
capab
superp

The L
range

IF Condition 1 AND Condition 2 AND Condition 3 AND � THEN TRUE
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
72

ULEX tool is designed for the Constrained Error Back-Propagation (CEBP) network, a
ic implementation of a multiplayer perceptron.
idden layers of the CEBP each represent a disjoint segment of the input training space.
eurons, which make up a hidden layer, are sigmoid-based locally responsive units
s).
nit in the hidden layer has a defined region of operation from within the input space.

RUs are explained as being composed of a set of ridges, one ridge for each dimension
 input. The one-dimensional ridge for an LRU is seen in Figure 3-30. An example of
U activation region across two dimensions is seen Figure 3-31. CEBP networks are
le of handling multi-dimensional data with the LRU regions created through the
osition of a ridge for each dimension of the input.

Figure 3-30. A 2D Ridge Representative of the Response Area of an LRU
RU will produce an output only if the value presented to the unit falls within the active
of the ridge.

Figure 3-31. A 3D Ridge Representative of the Responsive Area of an LRU

IVVNN-LITREV-F002-UNCLASS-111202

Us

For rule extraction to occur, each data point from within an input space must be classified by
a single LRU. When the network is presented with an input stimulus, only the one LRU that
corresponds to the input stimulus will generate an output.
The output of a multi-dimensional LRU is the thresholded sum of all of the outputs of its
ridge components. The output function is such that each individual ridge must be �active� for
the LRU to be �active.� Consequently, the LRU will not generate an output unless each
dimensional component to the input stimulus falls within the ridges of the LRU.
Since all of the LRU ridges must be active to have the LRU active, the prepositional
�if�then� rules can be extracted from the LRUs. As an example:

The CEB
of the ru
type.
For a di

where V
value.
For a co

where c
steepnes
LRUs.
The rela
≤ ci + b
The RU
for use u
A descri
weights
must be

IF RIDGE1 is Active
AND RIDGE2 is Active
AND RIDGEN is Active
THEN Input Pattern is in the Target Class

P network can be constructed to work for discrete or continuous systems. The form

les stays the same but the conditional expressions change based upon the system

screte system, the rules assume the form:

th

IF V1a OR V1b � OR V1n
AND V2a OR V2b � OR V2n
AND VNa OR VNb � OR VNn
THEN Input Pattern is in the Target Class
e or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
73

ix is the value along the i dimension and a, b, .., n are the possible states of that

ntinuous system, the rules assume the form:

i is the coordinate of the center of the ridge, bi is the width of the ridge, and ki is a
s measure of the ridge - all variables used in the sigmoid equations that create the

tionship between the discrete and the continuous rules is via ≥ ci � bi + 2.45ki
-1 and vin

i - 2.45ki
-1.

LEX tool is provided in the C language source code and an already compiled binary
nder MS-DOS on X86 platforms.
ption file is required for the network that provides the link between the numeric

 of the network and the symbolic output of the extracted rule. This is something that
 generated by the system analyst.

IF c1 � b1 + 2.45k1
-1 ≤ x1 ≤ c1 + b1 - 2.45k1

-1
AND c2 � b2 + 2.45k2

-1 ≤ x2 ≤ c2 + b2 - 2.45k2
-1

AND cN � bN + 2.45kN
-1 ≤ xN ≤ cN + bN - 2.45kN

-1
THEN Input Pattern is in the Target Class

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
74

When run, the RULEX program parses the description file, a weight file for the network, and
a test file name (containing test data to apply to the NN). The outputs from the execution are
written to a file called �RULEX.out.�
Since RULEX is a well-published algorithm and source code is provided for an
implementation under MS-DOS, it is a free program.
A system developer with a good knowledge on the construction of the CEBP (or similar
network) would not have a difficult time developing the description file for use with
RULEX. Creation of the description file can require a large amount of effort.
When all of the files are in place, it is quite easy to run the program and inspect results.
Currently, RULEX only works with networks of the CEBP architecture. There are other
networks that exhibit the same �one neuron activates at a time� form of operation, such as
some RBF networks and SOMs. The RULEX method can be modified to allow these
networks to benefit from this kind of rule extraction.
After the program has been instantiated, the rule generation routine runs without need of user
input. All rules generated by RULEX are stored in a single output file.
Neither the successes nor failures of RULEX are well documented; only a few examples are
provided in the literature. These examples include the successful application to a MONK�s
Robot Classification problem.
Finding the source code for RULEX required a great deal of effort, as the tool is not being
updated. However, a small readme.txt file is included with the source code and gives an
adequate, if brief, overview on using the tool.

3.3.14 SMV/NuSMV
Symbolic Model Verifier (SMV) is a Binary Decision Diagram (BDD)-based model checker
developed by Ken McMillan at Carnegie Mellon University (CMU). Its purpose is to check
finite state systems against specifications in Computation Tree Logic (CTL)
[McMillian 2001]
More than a theoretical tool, SMV identified several minor bugs in the Livingstone health
monitoring system employed on Deep Space One�s Remote Agent, an autonomous spacecraft
controller developed jointly by NASA Ames Research Center and the Jet Propulsion
Laboratory [Pecheur 2000]
An input file is required that defines the model (Kripke structure) to be verified and its
specifications. The model definition is written in an input language that McMillan designed
to allow for the description of both synchronous system models and asynchronous networks
of abstract, non-deterministic processes [McMillian 2001]. Using this language, a model can
be constructed in modular, reusable components that can have a hierarchical organization.
Booleans, scalars, and fixed arrays are the only data types used in SMV since it defines finite
state systems. The model specification is written as a CTL formula in the input file (defined
by the SPEC keyword). SMV will verify that all possible initial states of the model satisfy the
specification.
The SMV package containing necessary software and supporting documentation is free and
downloadable from the CMU School of Computer Science website: http://www-
2.cs.cmu.edu/~modelcheck/smv.html.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
75

SMV only runs in batch mode on Windows NT and most UNIX based operating systems. It
does not have a graphical user interface. It uses the DOS command prompt when run under
Windows NT and the familiar textual interaction shell in UNIX. Installation under either
requires little more than unpacking a compressed file to a directory and setting up the system
path. Once installed, SMV can be used to verify included example models and CTL
specifications.
Below is an example given by McMillian to show how SMV is used. Figure 3-32 is an SMV
input file that models a 3-bit binary counter circuit. Note the CTL formula after the SPEC
keyword. Figure 3-33 is a screen snapshot of the SMV output.

MODULE main

VAR

 bit0 : counter_cell(1);

 bit1 : counter_cell(bit0.carry_out);

 bit2 : counter_cell(bit1.carry_out);

SPEC

 AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

 value : boolean;

ASSIGN

 init(value) := 0;

 next(value) := value + carry_in mod 2;

DEFINE

 carry_out := value & carry_in;

Figure 3-32. SMV Input File That Models 3-Bit Binary Counter Circuit

Figure 3-33. SMV Output Screenshot After Executing Sample Model
It is unclear how much end-user support is provided for this tool, however bug fixes are
provided on the CMU website. The site provides neither a frequently-asked-questions page
nor a method to obtain assistance. Though the email addresses of the model checking group
members are provided, it does not explicitly or implicitly say that those are for support
purposes.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
76

Though SMV was designed for non-deterministic and other types of systems, it was not
designed for adaptive systems. Therefore, applicability to NNs would be limited to PTNNs.
NuSMV
NuSMV is an extension of SMV developed jointly by the Center for Technological and
Scientific Research (ITC-IRST), CMU, University of Genova, and University of Trento. In
addition to the capabilities inherited from SMV, NuSMV extends SMV by integrating
model-checking techniques based on prepositional satisfiability (SAT). [Cimatti 2002] The
complimentary model checking techniques of SAT and BDD, which solve different classes
of problems, are combined and used in NuSMV.
Similar to SMV, NuSMV requires an input file that defines the model to be verified and its
specifications. The language used to write this file is an extension of the SMV language.
Unlike SMV, NuSMV runs in either batch mode or interactively via a text shell.
The main features of NuSMV as described in the NuSMV 2.1 User Manual are the
following:

• Functionalities. SMV is expanded to allow for the analysis of specification formulas
written in both CTL and LTL.

• Architecture. Effort needed to extend or modify NuSMV is eliminated by the defined
software architecture.

• Quality of the implementation. It �is written in ANSI C, is POSIX compliant, and has
been debugged with Purify in order to detect memory leaks� [NuSMV 2002].

Because NuSMV is developed and distributed with an open source license, anyone can use
the tool and participate in its future development.
Support for NuSMV is much better defined than that of SMV, with more extensive
documentation, tutorials, a bug submission website, and email contacts.
Finally, NuSMV is no more applicable to adaptive systems than is its predecessor SMV.
Like SMV, its applicability to NNs is limited to PTNNs.

3.3.15 SPIN
SPIN (for Simple PROMELA INterpreter) is a scalable, finite state model checker
application useful for verifying a multi-threaded plan execution programming language. It is
a one-pass, on-the-fly verification tool that has its roots in a program developed at Bell Labs
in 1980. The tool checks for the logical consistency of a specification, deadlocks, unspecified
receptions, flag incompleteness, race conditions, and unwarranted assumptions about the
relative speeds of processes [SPIN 2002].
SPIN uses a PROMELA, a high level language, to specify system descriptions. It works
on-the-fly, so no construction of a global state graph or Kripke structure is required. It can
be used as a full LTL model checking system, although basic safety and liveness properties
do not require LTL. It supports rendezvous and buffered message passing, and
communicates through shared memory.
SPIN offers three modes of operation:

• Simulation, for rapid prototyping with random, guided, or interactive simulations

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
77

• Exhaustive state space analyzer, proving user-specified correctness requirements
using partial order reduction theory to optimize the search

• Bit-state space analyzer
Some of its noted success factors are

• Press-the-button verification
• Efficient implementation
• Good GUI (Xspin)

• More than two decades of research on advanced computer-aided verification, many
relating to optimization algorithms [Ruys 2002].

SPIN is written in ANSI C. It can run on all UNIX versions and can also be compiled to run
on Linux, Windows 95/98, and WindowsNT.
SPIN is well supported. In addition to online manual pages and documentation distributed
with the application, support also exists from a variety of other sources. One of the richest
sites is www.spinroot.com, which includes links to a tutorial, papers, and workshops.

3.3.16 STeP
Stanford Temporal Prover (STEP) is being developed by Stanford University�s REACT
research group to support the computer-aided formal verification of reactive, real-time and
hybrid systems based on their temporal specification [Bjørner 1996].
STEP combines deductive methods with algorithmic techniques to verify linear-time temporal
logic specifications of reactive and real-time systems. It uses verification rules, verification
diagrams [Manna 1994], automatically generated invariants, model checking, and a
collection of decision procedures to verify finite- and infinite-state systems.
Unlike most systems for temporal verification, STEP is not restricted to finite-state systems,
but combines model checking with deductive methods to allow the verification of a broad
class of complex systems, including parameterized circuit designs, parameterized programs,
and programs with infinite data domains.
The deductive methods of STEP verify temporal properties of systems by means of
verification rules and verification diagrams. Verification rules are used to reduce temporal
properties of systems to first-order verification conditions. In support of this process, STEP
has implemented verification diagrams to provide a visual language for guiding, organizing,
and displaying proofs. These diagrams enable the user to construct proofs hierarchically,
starting from a high-level and proceeding incrementally, as necessary, through layers of
greater detail.
Deductive verification almost always relies on determining, for a given program and
specification, suitably strong auxiliary invariants and intermediate assertions. STEP
implements a variety of techniques for automatic invariant generation. These methods
include local, linear, and polyhedral invariant generation, which perform an approximate,
abstract propagation through the system. Verification conditions can then be established
using the automatically generated auxiliary invariants as background properties.

http://www.spinroot.com/

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
78

Finally, STEP also provides an integrated suite of simplification and decision procedures for
automatically checking the validity of a large class of first-order and temporal formulas. This
degree of automated deduction is intended to efficiently handle most verification conditions
that arise in deductive verification. An interactive Gentzen-style theorem prover and a
resolution-based prover are available to establish the verification conditions that are not
proven automatically.
An overview of the STEP architecture is presented in Figure 3-34. The basic input is a
reactive real-time system, which may include both hardware and software descriptions. The
system is expressed as a fair transition system [Manna 1991]. System properties to be proven
are represented by the temporal logic formula. User guidance can be provided as
intermediate assertions or visually via the verification diagrams. In either case, the system is
responsible for generating and proving all of the required verification conditions.

Figure 3-34. The STEP System Structure
An educational version of the system, which accompanies the textbook [Manna 1991] is
available. The distribution includes a comprehensive user manual [Manna 1995] and a
tutorial. For many programs, ready-to-load verification diagrams are included as well.
STEP has three main interface components:

1. Top-level Prover, from which verification sessions are managed and verification rules
are invoked

2. Interactive Prover, used to prove the validity of first-order and temporal-logic
formulas that are not proven automatically

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
79

3. Verification Diagram Editor, for the creation of Verification Diagrams.
Figure 3-35 shows these three interfaces, with a version of the Bakery algorithm loaded,
together with a tree representing the ongoing proof process.

Figure 3-35. The STEP User Interface
STEP has been used to analyze a diverse number of systems, including:

• An infinite-state demarcation protocol used in distributed databases
• A pipelined four-stage multiplication circuit
• Ricart and Agrawala's mutual exclusion protocol
• Several (N-component) ring arbiters
• Szymanski's N-process mutual-exclusion algorithm
• An industrial split-transaction bus protocol to coordinate access for six processors.

Real-time systems analyzed include Fisher's mutual-exclusion protocol and a (parameterized)
railroad gate controller [Hietmeyer 1994].
STEP is implemented in the programming language Standard ML of New Jersey, using CML
and eXene for its X-Windows user interface.

3.3.17 UPPAAL
UPPAAL is a tool suite for verification of real-time systems that continues to be developed
collaboratively by the Basic Research in Computer Science at Aalborg University in
Denmark and the Department of Computer Systems at Uppsala University in Sweden. It is

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
80

an integrated environment for modeling, validation and verification of real-time systems
modeled as networks of timed automata, extended with data types (bounded integers, arrays,
etc.).
UPPALL is generally appropriate for systems that can be modeled as a collection of non-
deterministic processes with finite control structure and real-valued clocks, communicating
through channels or shared variables. Typical application areas for UPPAAL include real-
time controllers and communication protocols, in particular, those where timing aspects are
critical.
UPPAAL consists of three main parts:

• The description language is a non-deterministic guarded command language with
simple data types (e.g. bounded integers, arrays, etc.). It serves as a modeling or
design language to describe system behavior as networks of automata extended with
clock and data variables.

• The simulator validation tool enables examination of possible dynamic executions of
a system during early design stages. This provides an inexpensive means of fault
detection prior to verification by the model-checker.

• The model-checker checks invariant and reachability properties by exploring the
state-space of a system, i.e. reachability analysis in terms of symbolic states
represented by constraints.

The simulator and the model-checker are designed for interactive and automated analysis of
system behavior by manipulating and solving constraints that represent the state-space of a
system description. They share a common basis: constraint-solvers.
UPPALL provides both graphical and textual formats for the description language � one for
easy user interactive use and the other for ready interaction with automation of preprocessors,
etc. The description language, in particular, supports hybrid automata where the behavior of
the system variables can be described or approximated using lower and upper bounds on their
rates. A screen snapshot of UPPALL2k, the most recent version of UPPALL, is shown in
Figure 3-36.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
81

Figure 3-36. UPPAAL2k on Screen.
The features of UPPAAL2k include:

• A graphical system editor that allows graphical descriptions of systems.

• A graphical simulator, which provides graphical visualization and the ability to record
the possible dynamic behaviors of a system description. It may also be used to
visualize traces generated by the model-checker.

• A requirement specification editor that also constitutes a graphical user interface to
the verifier of UPPAAL2k.

• A model-checker for automatic verification of safety and bounded-liveness properties
by reachability analysis of the symbolic state-space.

• Generation of diagnostic traces in case verification of a particular real-time system
failure. The diagnostic traces may be automatically loaded and graphically visualized
using the simulator.

The two main design criteria for UPPAAL have been efficiency and ease of use. The
application of an on-the-fly searching technique has been crucial to the efficiency of the
UPPAAL model-checker. Another important key to efficiency is the application of a
symbolic technique that reduces verification problems to that of efficient manipulation and
solving of constraints.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
82

UPPAAL has been applied successfully in a number of industrial case studies, for example:

• Bounded Retransmission Protocol: This protocol is based on the alternating bit
protocol over a lossy communication channel, but allows for a bounded number of
retransmissions. D�Argenio reported that a number of properties of the protocol is
automatically checked with UPPAAL [D�Argenio 1997]. In particular, it is shown
that the correctness of the protocol is dependent on correctly chosen time-out values.

• Collision Avoidance Protocol: The protocol in [Jensen 1996; Aceto 1998] is
implemented on top of an Ethernet-like medium such as the CSMA/CD protocol. It
is used to ensure an upper bound on the communication delay between the network
nodes. It was designed and proven correct using UPPAAL. UPPAAL showed that
the protocol is collision-free, and that it does ensure an upper bound on the user-to-
user communication delay (assuming a perfect medium).

• LEGO MINDSTORMS Systems - Verification of RCX Systems: The studied
problem is that of checking properties of actual programs, rather than abstract models
of programs. It is shown how UPPAAL models can be automatically synthesized
from RCX programs, written in the programming language Not Quite C (NQC). The
system is modeled and checked using UPPAAL2k.

• Multimedia Stream: Bowman presents the specification and verification of a
multimedia stream in UPPAAL [Bowman 1998]. Multimedia streams are the
building blocks of distributed multimedia applications. The stream is described in the
UPPAAL model and then certain real-time properties are verified in the model-
checker. Verification of throughput and end-to-end latency are the primary focus.

• Philips Audio Protocol with Bus Collision: This is an extended variant of Philips
audio control protocol with bus collision detection. Its correctness was originally
proven by hand, and later proven by using UPPAAL in [Behrmann 1999].

UPPAAL is a client/server application implemented in Java and C++, and is currently
available for Linux, SunOS and Windows 95/98/NT. Subject to some conditions, it is free
for non-profit applications.
The developers of UPPAAL make no commitment to support the product and do not
guarantee the results it produces. It is available as research tool for other researchers to build
upon.

3.3.18 WVU F-15 Simulation
The WVU F-15 Simulation is a simulation tool developed for the IFC program by
researchers in the Department of Mechanical and Aerospace Engineering at WVU. Dr.
Marcello Napolitano has led development of this tool. This simulation has been described as
a flexible environment for analyzing different research issues within the flight control system
of the IFC program mentioned in Section 3.1.2.1 [Perhinschi 2002]. This tool allows for
detailed analysis of the different research components that comprise the Intelligent Flight
Control System, and, therefore, may serve as a useful tool for the study of the NN
components within this project. The WVU F-15 Simulation can be considered a tool that
addresses both testing and visualization of the software.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
83

The simulation environment is MATLAB/Simulink. The simulation incorporates the NN
components including the fixed PTNN and adaptive OLNN. While the simulation is specific
for the F-15, the researchers at WVU have proven they can modify the internal data to
accommodate additional aircraft such as the DeHavilland 2 Beaver, a propeller fixed-wing
aircraft.
The visualization queues are provided through the Aviator Visual Design Simulator (AVDS)
3D visualization package that has been integrated into the MATLAB simulation. The AVDS
package is a simple but effective 3D representation of the aircraft and offers different
viewing points both external and internal to the vehicle. It can also display traditional pilot
instrumentations, such as altitude and flight direction, for visual pilot feedback.
Real-time MATLAB plots are generated during the flight and are displayed on the screen or
stored for later analysis. These plots are user selected and show various values including
sensor data, error tracking of the research components, and pilot input. This is shown in
Figure 3-37.

Figure 3-37. The WVU F-15 Simulation

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
84

The simulation package allows the user to choose between several options through menus in
a graphical user interface (GUI) as seen in Figure 3-38. Perhinschi documents that the menus
are simple, easy to use, and allow for the selection of several simulation conditions including:

• Nominal or failure conditions
• Characteristics of the induced failure
! Time of occurrence
! Surface affected
! Locked surface, missing surface, combination of both
! Position locked
! Percentage missing surface

• Origin of input (joystick or pre-recorded commands)
• Research component versions (allowing different PTNNs, different OLNNs, etc.)
• Visualization and output options [Perhinschi 2002].

Figure 3-38. WVU Menus
The simulation was first developed for the GEN1 architecture, but further work has been
done to create the early version of the GEN2 architecture. Within the different architectures,
WVU has designed a process of selection that allows for choice of different NNs types. For
example, the online learner can be a dynamic cell structure, a modified RBF network, or
anything that a system user may wish to add into the simulation.
The flight simulation works within a Windows/PC hardware configuration. MATLAB is
available across other platforms including Macintosh, UNIX, and Linux, but the AVDS 3D
visualization is a Windows only based system. Continued development may allow for the

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
85

integration of a 3D visualization package from MATLAB making the tool more platform
independent.
The minimum hardware requirements for AVDS is a Pentium based PC running a version of
Windows later than Windows 95 with 16 MB of RAM (32 MB for Windows NT) and at least
100 MB of disk space. However, more memory, more disk space, and a graphics accelerator
capable of hardware acceleration of OpenGL are recommended.
A drawback to the simulation is the research-oriented development that keeps it in an
unclassified environment. The development has been done using public domain data and
publications that do not contain the exact detail of the F-15 aircraft. The F-15 aerodynamic
and thrust data used was from freely distributed code supplied by NASA for the 1990 AIAA
GNC Design Challenge. This data was for an F-15 with a single rudder tail whereas the F-15
ACTIVE has the standard two rudder configuration. A detailed analysis was done on the
WVU model, with the help of NASA DFRC engineers, to confirm that the WVU Simulation
was similar to the actual F-15 model [Perhinschi 2002]. The simulation developers are very
knowledgeable about the F-15 system, in general, and other non-military airframes can also
be incorporated into the simulation.
The WVU Simulation requires MATLAB, Simulink, and AVDS. A single MATLAB license
for a PC is approximately $5,000 (with all necessary toolboxes), Simulink is approximately
$3,000, and AVDS is $5,000. The WVU code itself is not yet available for public release,
but it was developed under a grant for NASA DFRC; therefore, it is obtainable for NASA
IV&V research.
The tool makes use of a simple to understand GUI that, through button selection, allows for
configuration of the simulation. Each GUI gives a small explanation of what is to be selected
and is easy to follow. There are several GUI windows that a user must work through, but the
total time and effort during the selection process is minimal.
The simulation uses the MATLAB language, which is like the C programming language.
The components of the Intelligent Flight Control System, such as the NNs, must be in
Simulink, which is more of a graphical programming language. MATLAB does provide a
convenient method to translate C programs into Simulink language blocks. If the code is in
another language, then it must be converted into C (which can then be easily moved into
Simulink), or re-programmed directly into Simulink.
The WVU Simulation is not automated and requires a user to operate the joystick to control
the aircraft. It also requires a user to select the scenarios each time through the simulation,
although this can be changed to run with pre-recorded commands from a data file.
Both the GEN1 and an early version of the GEN2 controllers have been tested and the
simulation does appear to be a useful tool based upon feedback from members of NASA
DFRC.
MATLAB, Simulink, and AVDS have good technical support. WVU is still in the
developing stages of the GEN2 scheme and have been very willing to make modifications
and improvements based on user feedback.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
86

4.0 EVALUATION OF TOOLS
A summary of the tools discussed and evaluated in this document is presented in the table
below. The table provides evaluation characteristics for each tool, organized in eight
columns: developer, applicability to NNs, expense, ease of use, translation required,
automation, track record, and available support. The goal of this table is to aid the decision-
maker in choosing the best tool for an application. With the exception of LOTOS, evaluation
criteria were restricted according to the following legend:

• NN Applicability: Yes, No, Partially
• Expense: Commercial, Shareware, or Freeware
• Ease of Use: Expert, Intermediate, or Beginner
• Translation: Required, or Not Required
• Automation: Yes, No, or Partial
• Track Record: Successful, Proven Unsuccessful, or Unproven
• Support: Commercial, Formal, or Informal

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
87

Section Tool Name Developer NN

Applicability
Expense Ease of Use Translation Automation Track

Record
Support

3.3.1 HyTech
University of
California,
Berkeley

Partially Freeware Intermediate Not Required Partial Successful Informal

3.3.2 Java PathExplorer NASA ARC No N/A Intermediate Not Required Yes Successful Informal

3.3.3 Java PathFinder 2 NASA ARC No Freeware Intermediate Not Required Yes Successful Informal

3.3.4 KRONOS VERIMAG
Corp. Partially Freeware Intermediate Not Required Partial Successful Informal

3.3.5 LOTOS Twente
University No Freeware Intermediate Required Yes Successful Informal

3.3.6 MATLAB NN
Toolbox MathWorks Yes Commercial Expert Not Required Yes Successful Commercial

3.3.7 Murphi Stanford
University Partially Freeware Intermediate Required Yes Successful Informal

3.3.8 PARAGON University of
Pennsylvania No Freeware Expert Required Partial Unproven None

3.3.9 PAX University of
Kiel No Freeware Intermediate Not Required Yes Successful Informal

3.3.10 Planview/Comview
Reid Simmons
and Gregory
Whelan

No Commercial Intermediate Not Required Yes Successful Formal

3.3.11 PVS SRI
International No Freeware Expert Required Yes Successful Formal

3.3.12 Real-Time Testing
Suite Yann-Hang Lee No Freeware Intermediate Not Required Yes Unproven Informal

3.3.13 RULEX
Robert
Andrews and
Shlomo Geva

Yes Freeware Intermediate Not Required Yes Unproven Informatl

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
88

Section Tool Name Developer NN
Applicability

Expense Ease of Use Translation Automation Track
Record

Support

3.3.14 SMV/NuSMV
Carnegie
Mellon
University

Partially Freeware Expert Not Required Partial Successful Informal

3.3.15 SPIN Bell Labs No Freeware Intermediate Required Yes Successful Informal

3.3.16 STeP Stanford
University Partially Freeware Intermediate Required Yes Successful Informal

3.3.17 UPPAAL

Uppsala
University in
Sweden and
Aalborg
University in
Denmark

Partially Freeware Intermediate Required Yes Successful Informal

3.3.18 WVU F-15
Simulator WVU Yes Freeware Intermediate Not Required Yes Unproven Informal

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
89

5.0 CONCLUSION

5.1 Method Review
Based on the literature survey and other investigation, six methods seem most promising for
the verification and validation of NNs. Those methods consist of traditional and automated
testing techniques, run-time monitoring, Lyapunov stability analysis, rule extraction, cross
validation, and visualization. Only one method, model checking, appears to have limited
application to NNs.
Testing is by far the easiest in practice. Neural network developers already separate input
data into training and testing data sets for NN development. Traditional testing, however,
fails to assure the rigorous standards required for high reliability environments and
safety-critical systems. Since most NNs are not used in high-reliability environments, a
testing set for error calculation is all a developer needs to assess the system. But for those
high assurance systems, such as aviation and robotic exploration, applying a simple testing
set does not work. Automated testing, in combination with developing novel test generation
algorithms, can overcome some of the limitations of traditional testing.
Run-time monitoring is the logical vehicle to offer real-time control and assessment of NNs.
The system monitor can act as an early warning system when an NN begins to behave
incorrectly. It may also be configured to remove the NN from control and replace it with a
backup, perhaps one with a standard programming technique. The next step in the IVVNN
will be the development of tools for run-time monitoring. These tools work for both fixed
and dynamic NNs, but their biggest payoff will be for the dynamic adaptive systems.
Lyapunov stability appears to have some promising results and could work well as a type of
safety monitor that continually analyzes a network to determine if it is tending towards
stability or convergence.
Rule extraction can provide a tester with insight into what a fixed NN has learned and let him
determine the acceptability of the network. Extraction does not work as well for dynamic
systems because the rules need to be extracted after each iteration of learning and then
judged for correctness. However, the extraction techniques are similar to rule initialization
and rule insertion, which are more applicable to dynamic NNs. Through rule initialization,
the network is given a starting point from which to adapt, which may offer some improved
confidence in its behavior. Rule insertion can be performed periodically, while in operation
or offline, to steer a dynamic network towards an area of knowledge.
Cross validation may work similar to diversification for fault-tolerant software. Instead of
using a single NN, diverse NNs would use several systems of different architectures.
Through configuration, these NNs can work in combination, providing checks and balances
to system control. The output from individual networks can be routed through a voting
mechanism that selects a course of action based on either a comparison or the weighted
average of responses from the networks. This technique filters out individual failures in an
NN because it can rely upon a set of NNs. System reliability can be expected to improve
because the likelihood of all of the NNs failing might be proven to be very low.
Visualization, which is commonly used to analyze software systems, may be especially
helpful for understanding the complex behavior of an NN in IV&V efforts. It can graphically
portray the way the weights and internal connections of an NN change, aiding human

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
90

interpretation and analysis. A plot of a changing error function gives almost immediate clues
as to how well an NN is learning.
One common method that does not seem to be useful for NN analysis is model checking. A
model checker searches all possible state transitions and execution paths to search for
violations of requirements. While some networks could be thought of as having states, it
would be unrealistic to attempt to model an NN within this framework. For an NN, its
function approximation is not an execution path. Model checking would fail to identify the
input sequence states that control how a network learns.

5.2 Tool Review
Of the tools the ISR reviewed, very few were found to be directly applicable to NNs. Basic
tools such as the MATLAB NN Toolbox are of benefit to NN developers and testers, but the
tools do not offer guidance as to how the tester should analyze the system or what the results
actually mean.
The techniques applied to validate and verify autonomous systems such as RAX will not
translate well to NNs. These methods check for thread behavior and inconsistencies with
resource utilization and undefined state responses. Tools like Java Pathfinder and Java
PathExplorer analyze lock and semaphore access to eliminate potential deadlocks and race
conditions. These are types of faulty behavior that can occur in almost any type of
multiprocessing software system. These tools fail to address the unique characteristics of
NNs.
Additional tools may exist that offer greater benefit for NN analysis than the ones reviewed
for this report. The Future Work section of this report addresses how the ISR will improve
its tool knowledge through use of some of these applications, perhaps on a sample set of NN
code.

5.3 Summation
Overall, the V&V field for NNs is starting to receive attention; new tools and techniques
have emerged in the past ten years. Still, with all of this effort, no easy way has been
developed for an IV&V practitioner to know what will, or will not, work for a particular
system. No methodology exists to provide a practitioner with the ability to IV&V an NN.
The ISR has surveyed the most prevalent V&V techniques for NNs and is exploring
possibilities for combining their use into a methodology that will be useful for the IV&V of
NNs.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
91

6.0 FUTURE RESEARCH
The literature summary was the first task performed by the ISR for Development of
Methodologies for IVVNN. Having surveyed the literature concerning current methods and
tools available, the ISR will address two issues:

• No overall standard exists that addresses independent verification and validation
techniques specifically for NNs.

• Current V&V techniques for NNs are still immature and are not sufficiently
developed.

The ISR will approach these issues through two avenues. The ISR will perform research in
quantifying human pilot factors that may be useful in developing a methodology for IVVNN.
The ISR will also build upon existing IV&V processes such as formal methods and testing, to
develop a unique process effective for NNs.

6.1 Research on Human Factor Analysis Based on Pilot Certification
The ISR has proposed that the criteria used to evaluate human pilots for the military may be
helpful in evaluating NNs for use in aerospace applications. Given that artificial NNs are
mathematical simulations of biological intelligence, there are parallels that can be identified
between an ANN used in intelligent flight control and a human pilot.
The next phase of the IVVNN project will evaluate military standards for pilot certification
and investigate the answers to the following questions:

• Can studying the process by which a pilot is certified give insight into the process for
developing and validating NNs?

• Can techniques used for training humans be extended to tools and methods used for
training NNs?

• Is there a mapping between run-time monitoring and pilot performance evaluation,
between rule extraction and pilot communication, or between automated testing and
hours of pilot training in a cockpit?

The result of this study may lead to formulating an underlying IV&V standard for NNs.
Methods evaluated in this report may become components of this standard. Techniques
based on these methods may be developed and used for evaluating NNs just as processes and
steps have been developed to evaluate pilots.

6.2 Improvements on Existing Processes
In addition to the human factors research, the ISR will also explore ways to utilize, advance,
or adapt existing IV&V methods to create a process that is effective for analyzing NNs. The
ISR will examine formal methods, run-time monitoring, testing, and visualization.

6.2.1 Formal Methods
The term �Formal methods� refers to the use of techniques from formal logic and discrete
mathematics in the specification, design and construction of computer systems and software.
The purpose of applying formal methods is to make verification and validation of the
software more objective by supplementing the traditional testing methods. The more

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
92

rigorous the formal method the more effort and skill required to apply it and the more
assurance the method will provide. The two formal methods that the ISR intends to examine
in detail for application to NNs are rule extraction and model checking.

6.2.1.1 Rule Extraction
Rule extraction techniques may be appropriate for fixed NNs like a PTNN. If an NN has
already been trained and tested to acceptable levels by its development team, an IV&V
practitioner could then apply rule extraction to produce rules. These rules could then be
compared against the original set of requirements and would provide information for review
of the correctness of the function the network is approximating. For situations where NNs
have inadequate requirements, rule extraction can be used to generate reverse requirements
of the knowledge contained in the NN. At a minimum, extraction of these rules would
provide some sense of confidence that the network will behave as it was intended.
For NNs that are dynamic like the OLNNs, similar techniques, such as rule initialization and
rule insertion would be more appropriate. Improvements of a network�s generalization might
be made from specifically setting it at a desired starting point. Setting up a starting point
through rule initialization could lead to a constrained learning regime. Rule insertion could
be applied to continually steer a network�s learning back to this desired operational regime.
As a network adapts in a system, it may tend to �forget� previous knowledge, rule insertion
could serve as a memory reminder to keep the network within an input space.
Rule extraction and rule insertion applied with NN diversification may prove to be useful. In
systems that make use of several different NN architectures for reliability enhancement, fault
recovery may be accomplished through extraction rather then insertion. Consider a scenario
where three differently configured SOMs work together to form a system. If one of the
networks fails, the system could be designed to reset that faulty network through rule
extraction and rule insertion, reloading knowledge from the other two NNs into the failed
network. This could restore the original N-system configuration rather than degrading to a
(N-1)-system.
The ISR will use the MLP PTNN and the SOM OLNN from the IFC project to investigate
how rule extraction techniques work on complex networks. From the literature survey it
appears that the rule extraction techniques have only been applied to simple NNs, mainly
chosen for their suitability to these techniques. Rule extraction, using the thresholding
approach to generate decompositional rules, relies on networks where the internal neurons
represent distinct regions. Obviously, not every project will make use of these kinds of
networks. The IFC project�s NNs will be an excellent testbed to explore the possibilities of
rule extraction, rule initialization and rule insertion. Since requirements were generated for
both of the networks used in the IFC project, rule extraction might be used in a requirements
traceability study. Further, we can observe the performance of the OLNN given an initial set
of knowledge based upon a priori system information to see if this initialization improves
overall stability and correctness.

6.2.1.2 Model Checking
Model checking on an individual NN component appears to be ill defined and complicated, if
even possible. The ISR will explore how model checking may be applied to a high level
view of a system that contains an NN. For this work, the ISR will examine existing model

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
93

checking techniques to determine if they can be applied to the IFC system. This exploration
will determine whether model checking will be useful in the IV&V process for NNs.

6.2.2 Run-Time Monitoring Methods
Run-time or operational monitoring methods appear to be the next evolution of IV&V for
OLNNs. Aimed at application for dynamic NNs, a run-time monitor would have to be
developed as part of the system during the design phase of the project. The monitor, working
like an oracle, would provide system specific solutions. The ISR will investigate at least four
classes of run-time monitors.

6.2.2.1 Data Sniffing (WVU)
Data sniffing is used to assess data as it enters and exits an NN to determine whether the
OLNN has adjusted acceptably. This is an area of ongoing research at WVU. The ISR will
assess the benefits of data sniffing by applying this technique to the OLNN of the IFC
project.

6.2.2.2 Monotonic Learning (WVU)
Monotonic learning is also a method being researched at WVU and by Dr. Ali Mili at the
New Jersey Institute of Technology. This method is still in the early stages of development.
One issue that must be addressed regarding monotonic learning is how it can be applied to
handle larger systems. WVU has some concerns regarding scalability of this method. Since
NNs are normally applied to environments that are so complex that other software solutions
are impractical, the possible function space that the NN can migrate to during learning may
make a monotonic learning monitor unfeasible. The ISR will examine this technique to
access its viability and applicability to IVVNN.

6.2.2.3 Safety Monitors
The ISR�s experience in the past with developing safety monitors has been in system specific
implementations. For example, with the IFC GEN1 program, there are two safety monitors:
one for the PTNN and one for the OLNN. The PTNN safety monitor is essentially a reduced
table version of the knowledge of the PTNN. This safety monitor resides on a different
computer system that has been rigorously tested and has a high level of safety assurance.
The monitor checks the outputs from the PTNN to ensure it stays within pre-defined bounds.
For the IFC�s OLNN, the monitor verifies the range of outputs to ensure they stay within
acceptable robustness bounds based upon several different aircraft criteria including physical
stress-loads on the F-15.
The ISR will examine the procedures used to develop these safety monitors to establish
fundamental concepts that could be used as a guide for run-time monitoring design.
Investigation must be done to determine the influence the system�s criticality classification
has on the level of detail and sophistication of a safety monitor.

6.2.2.4 Lyapunov Stability (NASA DFRC/NASA ARC/WVU)
Lyapunov stability is the current research focus for both NASA DFRC and NASA ARC in
regards to run-time monitoring within the IFC program. As a member of this development
team, the ISR can conduct additional work to expand the knowledge gained from using
Lyapunov stability analysis. Results of this research will discuss function selection, the use

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
94

of Lyapunov during runtime, and the generalization of this technique beyond the use for an
adaptive flight control scheme.

6.2.3 Testing Methods
Currently testing is the first option system developers consider for the assessment of an NN.
One technique developed by Taylor and Cukic to improve current testing methods is the
automated trajectory generator. The ISR will further refine this test data generator and
implement a MATLAB tool that IV&V practitioners can easily use for testing an NN
application. The ISR will apply this testing technique towards a study of the IFC program to
improve the technique�s usefulness.

6.2.4 Visualization Methods
Visualization techniques capitalize on a persons highly developed visual pattern-recognition
abilities. During the learning phase and the testing phase visualization techniques may be
effectively applied to an NN. Visualization can provide both insight into the decision
making process and the learning process of an NN during training. Also, during the testing
of a system, a simulation environment like the WVU F-15 Simulation can provide
information on the OLNNs ability to adapt in real-time.

6.2.4.1 Visualization of Learning
The ISR will investigate current methods used for the visualization of an NN during the
learning phase of its development. Such techniques include the hyperplane animator,
trajectory diagrams and visual techniques incorporated in the MATLAB NN Toolbox.
Future research in visualization of NN learning must address the challenge of compressing
high-dimensional spaces into easily understood and meaningful representations that will give
a developer insight into the adaptation of the system during training or operation. The ISR
will apply visualization techniques to the NNs of the IFC project to determine their
usefulness to the IV&V of the software.

6.2.4.2 WVU F-15 Flight Simulation
The ISR will investigate the success of using a simulation environment for the assessment of
NNs with a case study of the WVU F-15 simulation. While this simulation has been
specifically created for the IFC program, the effectiveness of using such a system simulation
with regard to visualization could be measured. A careful analysis will be done that includes
examination of NN parameters across time and examination of the usefulness of visual cues
pertaining to system errors in real-time to overall reliability calculations. Results may yield a
strategy for increasing the fidelity of a system simulation to build up from a basic NN
component level simulation to increasingly higher system level views. The ISR may also be
able to identify which levels of fidelity yield better results based upon available resources.

6.3 Tying It All Together
The three stages of the software life cycle where these current methods and techniques
appear to have the most impact are development (learning), testing, and operation stages.
Once the ISR has studied the above methods in more detail and identified those that are most
effective, we will then begin to organize them into a methodology that can be applied to the
verification and validation of NNs by the IV&V practitioners.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
95

7.0 REFERENCES
[Aceto 1998] Aceto, Luca, Augusto Bergueno and Kim G. Larsen. 1998. Model checking

via reachability testing for timed automata. In Proceedings of the 4th
International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, ed. Bernhard Steffen, Gulbenkian Foundation, Lisbon,
Portugal, 31 March - 2 April. Lecture Notes in Computer Science
1384:263-280.

[Ackley 1985] Ackley, D.H., G.E. Hinton, and T.J. Sejnowski. 1985. A learning algorithm for
boltzmann machines. Cognitive Science 9:147-169.

[Alur 1996] Alur, R., T.A. Henzinger, and P.H. Ho. 1996. Automatic symbolic verification
of embedded systems. IEEE Transactions on Software Engineering
22:181-201.

[Andrews 1995a] Andrews, R., J. Diederich, and A. B. Tickle. 1995. A survey and critique of
techniques for extracting rules from trained artificial neural networks.
Knowledge-Based Systems, 8(6):373-389.

[Andrews 1995b] Andrews, R. and S.Geva. 1995. RULEX & CEBP networks as the basis for a
rule refinement system. In Hybrid Problems, Hybrid Solutions, ed. John
Hallam. IOS Press. 1-12

[Behrmann 1999] Behrmann, Gerd, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang
Yi. Efficient timed reachability analysis using clock difference diagrams. Basic
Research in Computer Science Series (BRICS) Report RS-98-47,
Department of Computer Science, University of Asrhus, Denmark.

[Bjørner 1996] Bjørner, Nikolaj, Anca Browne, Eddie Chang, Michael Colón, Arjun Kapur,
Zohar Manna, Henny B. Sipma, and Tomás E. Uribe. 1996. STEP:
Deductive-algorithmic verification of reactive and real-time systems.
International Conference on Computer Aided Verification, Lecture Notes in
Computer Science, Springer-Verlag 1102:415-418.

[Bowman 1998] Bowman, H., G. Faconti, and M. Massink. 1998. Specification and verification
of media constraints using UPPAAL. In 5th Eurographics Workshop on the
Design, Specification and Verification of Interactive Systems, Eurographics
Series. Springer-Verlag (August).

[Boyce 1997] Boyce, W. and DiPrima, R. 1997. Elementary Differential Equations and
Boundary Value Problems. Sixth Edition. John Wiley & Sons, Inc.
ISBN 0-471-08955-9.

[Bradley 1995] Bradley, S., D. Kendall, W.D. Henderson, and A.P.Robson. 1995. Validation,
verification and implementation of timed protocols using AORTA. In Protocol
Specification, Testing and Verification XV (PSTV’95). Lecture Notes in
Computer Science 1066, Springer-Verlag. 208-219.

[Brat 2000] Brat, Guillaume, K. Havelund, S.J. Park, and W. Visser. 2000. Java
Pathfinder: Second generation of a Java model checker. In Proceedings of
the Workshop on Advances in Verification. Chicago, Illinois.

[Broomhead 1988] Broomhead, D.S. and D. Lowe. 1988. Multivariable functional interpolation
and adaptive networks. Complex Systems 2:321-355.

[Buchi 1960] Buchi, J.R. 1960. Weak second-order arithmetic and finite automata.
Zeitschrift f ur Mathematische Logik und Grundlagen der Mathematik 6:66-92.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
96

[Cimatti 2002[

Cimatti, Alessandro, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
2002. NuSMV2: An Open Source Tool for Symbolic Model Checking.
Technical Report DIT-02-016, Informatica e Telecomunicazioni, Università
degli Studi di Trento. Available from the WWW at
http://eprints.biblio.unitn.it/archive/00000085/.

[Clarke 2001] Clarke, E., D. Garlan, B. Krogh, R. Simmons, and J. Wing. 2001. Formal
Verification of Autonomous Systems: NASA Intelligent Systems Program.
Carnegie Mellon University, Pittsburgh, PA.

[Craven 1992] Craven, Mark W. and Jude W. Shavlik. 1992. Visualizing learning and
computation in artificial neural networks. International Journal on Artificial
Intelligence Tools 1(3):399-425.

[Craven 1994] Craven, M. W., and J. W Shavlik. 1994. Using sampling and queries to
extract rules from trained neural networks. Machine Learning: Proceedings of
the Eleventh International Conference, San Francisco, CA. New Brunswick,
NJ: Morgan Kaufmann. 37-45.

[Cukic 2001] Cukic, Bojan. 2001. Levels of fidelity for testing of pre-trained neural
networks. Reports provided to the ISR as deliverable for IFCS program in
January 2002.

[Cukic 2002] Cukic, Bojan, Brian J. Taylor, and Harhsinder Singh. 2002. Automated
generation of test trajectories for embedded flight control systems.
International Journal of Software Engineering and Knowledge Engineering
12(2):175-200.

[D’Argenio 1997] D'Argenio, P.R., J.P. Katoen, T.C. Ruys, and J. Tretmans. 1997. The
bounded retransmission protocol must be on time! In Proceedings of the 3rd
International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems. Enschede, The Netherlands, April 1997. Lecture Notes
in Computer Science 1217:416-431.

[Daws 1995] C.Daws and S.Yovine. 1995. Two examples of verification of multirate timed
automata with KRONOS. In Proceedings of the 1995 IEEE Real-Time
Systems Symposium, RTSS'95, Pisa, Italy. IEEE Computer Society Press.

[Duch 2001] Duch, W., R. Adamczak, and K. Grabczewski. 2001. A new methodology of
extraction, optimization, and application of crisp and fuzzy logical rules. IEEE
Transactions on Neural Networks. 12(2):277-306.

[Dukelow 1994] Dukelow, J. Verification and validation of neural networks. 1994. Abstract
published in Proceedings of the Neural Network Workshop for the Hanford
Community, Pacific Northwest National Laboratory, Richland, WA. 76-80.

[Fu 1994] Fu, L. M. Rule generation from neural networks. 1994IEEE Transactions on
Systems, Man, and Cybernetics. 28(8):1114-1124.

[Gibson 1993] J. Gibson. 1993. A LOTOS-based approach to neural network specification.
Technical Report CSM-112, Department of Computing Science and
Mathematics, University of Stirling (May).

[Grossburg 1980] Grossburg, S. 1980. How does a brain build a cognitive code? Psychological
Review, 87:1-5.

[Havelund 2000] Havelund, K., M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser; and J.L.
White. 2000. Formal analysis of the Remote Agent before and after flight. In
Proceedings of 5th NASA Langley Formal Methods Workshop, Williamsburg,
VA. Available from multiple WWW sites, including
http://ase.arc.nasa.gov/havelund/Publications/rax.ps.

[Havelund 2001] Havelund, Klaus and Grigore Rosu. 2001. Java PathExplorer - A runtime
verification tool. In The 6th International Symposium on AI, Robotics and
Automation in Space. Available from the WWW at
http://citeseer.nj.nec.com/havelund01java.html

http://eprints.biblio.unitn.it/archive/00000085/
http://ase.arc.nasa.gov/havelund/Publications/rax.ps
http://citeseer.nj.nec.com/havelund01java.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
97

[Haykin 1999] Haykin, S.. 1999. Neural Networks: A Comprehensive Foundation. Second
edition. New York: MacMillan Publishing.

[Hebb 1949] Hebb, D.O. 1949. The Organization of Behavior: A Neurophysiological
Theory. New York: Wiley

[Henzinger 1992] Henzinger, T.A., X. Nicollin, J. Sifakis, and S. Yovine. 1992. Symbolic model
checking for real-time systems. In Proceedings of the IEEE Conference on
Logics in Computer Science (LICS).

[Henzinger 1994] Henzinger, T.A., X. Nicollin, J. Sifakis, and S. Yovine. 1994. Symbolic model
checking for real-time systems. Information and Computation,
111(2):193-244.

[Henzinger 1995] Henzinger, Thomas A., Pei-Hsin Ho, and Howard Wong-Toi. 1995. A user
guide to HyTech. In Proceedings of the First International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS '95),
Lecture Notes in Computer Science 1019, Springer-Verlag, 41-71.

[Henzinger 1996] Henzinger, Thomas A. and Howard Wong-Toi. 1996. Formal methods for
industrial applications: Specifying and programming the steam boiler control.
Lecture Notes in Computer Science 1165, Springer-Verlag,. 265-282.

[Henzinger 1997a] Henzinger, Thomas A., Pei-Hsin Ho, and Howard Wong-Toi. 1997. Software
tools for technology transfer. In Proceedings of the Ninth International
Conference on Computer-aided Verification (CAV '97), Lecture Notes in
Computer Science 1254, Springer-Verlag, 460-463.

[Henzinger 1997b] Henzinger, T.A., P.H. Ho, and H. Wong-Toi. 1997. HyTech: A model checker
for hybrid systems. Software Tools for Technology Transfer 1:110-122.

[Hietmeyer 1994] Hietmeyer, C., and N. Lynch. 1994. The generalized railroad crossing: A
case study in formal verification of real-time systems. In Proc. ICCC Real-
Time Systems Symposium. IEEE Press. 120-131.

[Hinton 1986] Hinton, G.E., McClelland, J.L., and Rumelhart, D.E. 1986. Distributed
representations. In Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, eds. D.E. Rumlehart and J.L. McClelland.
Cambridge: MIT Press. 77-109.

[Ho 1995] Ho, Pei-Hsin, and Howard Wong-Toi. 1995. Automated analysis of an audio
control protocol. In Proceedings of the Seventh International Conference on
Computer-aided Verification (CAV 1995), Lecture Notes in Computer Science
939, Springer-Verlag, 381-394.

[Hopfield 1982] Hopfield, J.J. 1982. Neural networks and physical systems with emergent
collective computational abilities. In Proceedings of the National Academy of
Sciences. 81:3088-3092.

[Jahanian 1995] Jahanian, Farnam. 1995. Run-time monitoring of real-time systems. In
Advances in Real-Time Systems, ed. S. Son, Chapter 18. Prentice Hall (out
of print). Paper available at
http://citeseer.nj.nec.com/chodrow95runtime.html.

[Jensen 1996] Jensen, Henrik Ejersbo, Kim G. Larsen, and Arne Skou. 1996. Modelling and
analysis of a collision avoidance protocol using SPIN and UPPAAL. In
Proceedings of the 2nd SPIN Workshop, Rutgers University, NJ.

[Jourdan 1993] Jourdan, M., F. Maraninchi, and A. Olivero. 1993. Verifying quantitative real-
time properties of synchronous programs. In Fifth International Conference
on Computer-aided Verfication, Elounda. Lecture Notes in Computer Science
697, Springer Verlag.

[Keedwell 2001] Keedwell, E., A Narayanan, and D. Savic. 2001. Creating rules from trained
neural networks using genetic alorithms. International Journal of Computers,
Systems, and Signals. 1:30-43.

http://citeseer.nj.nec.com/chodrow95runtime.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
98

[Keller 1996] Keller, Paul E. Electronic/Artificial Noses Technology Brief,
http://lancair.emsl.pnl.gov:2080/proj/neuron//briefs/nose.html.

[Kirkpatrick 1983] Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi. 1983. Optimization of simulated
annealing. Science, 220:671-680.

[Knaus 1998] Knaus, Rodger and Larry Medsker. 1998. Verification and validation of neural
nets. In Advanced Research Team '98, CD-ROM FHWA-RD-99-066 Federal
Highway Adminstration, USDOT.

[Kohonen 1982] Kohonen, T. 1982. Self-organized formation of topologically correct feature
maps. Biological Cybernetics. 43:49-59.

[Krogh 1995] Krogh, Anders and Jesper Veldelsby. 1995. Neural network ensembles, cross
validation, and active learning. Advances in Neural Information Processing
Systems 7:231-238.

[Lee 2000] Lee, Yang-Hang. 2000. An environment for test analysis of real-time
software. (Submitted under 2000 Center Software Initiative for the NASA
Software IV&V Facility)

[Lisboa 2001] Lisboa, P. 2001. Industrial use of safety-related artificial neural networks.
Health and Safety Executive Contract Research Report 327.

[Liu 2002] Liu, Yan, Tim Menzies, and Bojan Cukic. 2002. Data sniffing – Monitoring of
machine learning for online adaptive systems. In 14th IEEE International
Conference on Tools with Artificial Intelligence.

[Mackall 2002] Mackall, D., S. Nelson, and J. Schumman. 2002. Verification & validation of
neural networks for aerospace systems. NASA Technical Report.

[Manna 1991] Manna, Z. and A. Pnueli. 1991. The Temporal Logic of Reactive and
Concurrent Systems: Specification. NY:Springer-Verlag.

[Manna 1994] Manna, Z., and A. Pnueli. 1994. Temporal verification diagrams. In
Symposium on Theoretical Aspects of Computer Software, Lecture Notes in
Computer Science 789 Springer-Verlag, 726-765.

[Manna 1995] Manna, Zohar and the STeP Group. 1995. STeP: The Stanford Temporal
Prover (educational release) user's manual. Technical Report
STAN-CS-TR-95-1562, Computer Science Department, Stanford University.

[McCulloch 1943] McCulloch, W.S. and W. Pitts. 1943. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics 5:115-133.

[McMillan 1991] McMillan, C., M. C. Mozer, and P. Smolensky. 1991. The connectionist
scientist game: Rule extraction and refinement in a neural network. In
Proceedings of the Thirteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ..

[McMillian 2001] McMillian, K.L. 2001. The SMV system for SMV version 2.5.4. Carnegie
Mellon University.

[Menzies 2000] Menzies, Tim, and Bojan Cukic. 2000. How many tests are enough?
Handbook of Software Engineering and Knowledge Engineering Vol. 2. World
Scientific Publishing Company. ISBN: 981-02-4974-8

[Minksky 1969] Minsky, M.L., and S.A. Papert. 1969. Perceptrons. Cambridge, MA: MIT
Press.

[Minsky 1954] Minsky, M.L. 1954. Theory of neural-analog reinforcement systems and its
application to the brain-model problem. Ph.D. thesis, Princeton University,
Princeton, NJ.

[Minsky 1967] Minsky, M.L. 1967. Computation: Finite and Infinite Machines. Englewood
Cliffs, NJ: Prentice-Hall.

[Misra 1988] Misra, J., and K. M. Chandy. 1988. Parallel Program Design: A Foundation.
Addison-Wesley.

http://lancair.emsl.pnl.gov:2080/proj/neuron//briefs/nose.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
99

[Munro 1991] Munro, P. 1991. Visualization of 2-D hidden unit space. Technical Report
LIS035/IS91003, School of Library and Information Science, University of
Pittsburgh, Pittsburgh, PA.

[Neal 1992] Neal, R.M. 1992. Connectionist learning of belief networks. Artificial
Intelligence 56:71-113.

[Nelson 2001] Nelson, Stacy and Charles Pecheur. 2001. New V&V tools for diagnostic
modeling environment(DME). Produced for the Space Launch Initiative 2nd
Generation RLV TA-5 IVHM Project..

[Nelson 2002] Nelson, Stacy and Charles Pecheur. 2002. V&V of advanced systems at
NASA. Produced for the Space Launch Initiative 2nd Generation RLV TA-5
IVHM Project..

[Nicollin 1992] Nicollin, X., J. Sifakis, and S. Yovine. 1992. Compiling real-time specifications
into extended automata. IEEE TSE Special Issue on Real-Time Systems,
18(9):794-804.

 [NuSMV 2002] NuSMV2.1 User Manual. Available from the WWW at
http://nusmv.irst.itc.it/NuSMV/userman/v21/nusmv.pdf.

[Pearl 1988] Pearl, J. 1988. Probabilistic reasoning in intelligent systems. San Mateo, CA:
Morgan-Kaufmann.

[Pecheur 1997] Pecheur, Charles. 1997. Specification and verification of the Co4 distributed
knowledge system using LOTOS. In Proceedings of the 12th IEEE
International Conference on Automated Software Engineering. Incline Village,
NV.

[Pecheur 2000] Pecheur, Charles and Reid Simmons. 2000. From Livingstone to SMV:
Formal verification of autonomous spacecraft. In Proceedings of the FAABS
2000 Conference, Greenbelt, MD. 103-113.

[Pecheur 2000] Pecheur, Charles. 2000. [Projects:] Verification and validation, Automated
Software Engineering Group NASA Ames Research Center Web site,
Updated 17 June. Available from the WWW at
http://ase.arc.nasa.gov/docs/vandv.html.

[Perhinschi 2002] Perhinschi, M. G., G. Campa, M. R. Napolitano, M . Lando, L. Massotti, and
M.L. Fravolini. 2002. Modeling and simulation of a fault tolerant flight control
system. Submitted to International Journal of Modelling and Simulation in
April 2002.

[Power Technology 1999] Power Technology. 1999. Generic NOx control intelligent system. R&D
Brochure. Available from the WWW at
http://www.powertech.co.uk/downloads/R&D/NOxControlSystem.pdf.

[Pratt 1991] Pratt, L.Y. and Mostwo, J. 1991. Direct transfer of learned information among
neural networks. In Proceedings of the Ninth National Conference on
Artificial Intelligence, Anaheim, CA. 584-589.

[Pratt 1993] Pratt, L. Y., and Nicodemus, S. 1993. Case studies in the use of a hyperplane
animator for neural network research. In Proceedings of the IEEE
International Conference on Neural Networks, IEEE World Congress on
Computational Intelligence, 1:78-83.

[Rodvold 1999] Rodvold, David M. 1999. A software development process model for artificial
neural networks in critical applications. In Proceedings of the 1999
International Joint Conference on Neural Networks (ICNN’99).

http://nusmv.irst.itc.it/NuSMV/userman/v21/nusmv.pdf
http://ase.arc.nasa.gov/docs/vandv.html
http://www.powertech.co.uk/downloads/R&D/NOxControlSystem.pdf

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
100

[Rosenblatt 1960] Rosenblatt, F. 1960. On the convergence of reinforcement procedures in
simple pereceptrons. Cornell Aeronautical Laboratory Report, VG-1196-G-4,
Buffalo, NY.

[Rumelhart 1986] Rumelhart, D.E. and J.L. McClelland, eds., 1986, Parallel distributed
processing: Explorations in the microstructure of cognition, Vol. 1 & 2,
Cambridge, MA: MIT Press.

[Ruys 2002] Ruys, Theo C. 2002. SPIN beginners’ tutorial. Presented at SPIN 2002
Workshop, Grenoble, France April 11. Available on the WWW at
http://spinroot.com/spin/Doc/SpinTutorial.pdf.

[Sharkey 1995a] Sharkey, Amanda and Noel Sharkey. 1995. How to improve the reliability of
Artificial Neural Networks. Department of Computer Science, University of
Sheffield, UK. Research Report CS-95-11. Available at
http://citeseer.nj.nec.com/sharkey95how.html

[Sharkey 1995b] Sharkey, A.J.C., N.E. Sharkey, and O.G. Chandroth. 1995. Neural nets and
diversity. In Proceedings of the 14th International Conference on Computer
Safety, Reliability and Security. Springer-Verlag. 375-389.

[Simmons 1997] Simmons, Reid and Gregory Whelan. 1997. Visualization tools for validating
software of autonomous spacecraft. In Proceedings of the 4th International
Symposium on Artificial Intelligence, Robotics, and Automation for Space
(I-SAIRAS), Tokyo, Japan.

[Skapura 1996] Skapura, David M. and Peter S Gordon. 1996. Building Neural Networks.
Addison-Wesley.

[Sokolsky 1996] Sokolsky, Oleg, Insup Lee, and Hanene Ben-Abdallah. 1996. Paragon
toolset: A tutorial.

[SPIN 2002] On-The-Fly, LTL Model Checking with SPIN. 2002. Page dated October 1,
2002 available from the WWW at http://spinroot.com/spin/..

[Stolarik 2001] Stolarik, B. 2001. A neural network-based sensor validation scheme within
aircraft control laws. Master’s thesis, West Virginia University. Available at
http://etd.wvu.edu/ETDS/E2147/Stolarik_Brian_Thesis.pdf

[Taylor 1999] Taylor, Brian J. 1999. Regressive Model Approach to the Generation of Test
Trajectories. Master’s thesis, West Virginia University. Available at
http://etd.wvu.edu/templates/showETD.cfm?recnum=1077

[Thrun 1995] Thrun, S. 1995. Extracting rules from artificial neural networks with
Distributed Representations. In Advances in Neural Information Processing
Systems (NIPS) 7, eds G. Tesauro, D. Touretzky, and T. Leen. Cambridge,
MA: MIT Press.

[Towell 1990] Towell, G.G., Shavlik, J.W., and Noordewier, M.O. 1990. Refinement of
approximately correct domain theories by knowledge-based neural networks.
In Proceedings of the Eighth National Conference on Artificial Intelligence.
Boston, MA: MIT Press. 861-866

[Towell 1991] Towell, G.G., M.W. Craven, and J.W. Shavlik. 1991. Constructive induction in
knowledge-based neural networks. In Machine Learning: Proceedings of the
Seventh International Workshop. Evanston, IL. Morgan Kaufmann. 213-217.

[Towell 1993] Towell, Geoffrey G. and Jude W. Shavlik. 1993. Extracting refined rules from
knowledge-based neural networks. Machine Learning 13:71-101

[von der Malsburg 1973] von der Malsburg, C. 1973. Self-organization of orientation sensitive cells in
the striate cortex. Kybernetik 14:85-100

[Wejchert 1990] Wejchert, J., and Tesauro, G. 1990. Neural network visualization. In
Advances in Neural Information Processing Systems, Vol. 2, 465-472. San
Mateo, CA.: Morgan Kaufmann.

http://spinroot.com/spin/Doc/SpinTutorial.pdf
http://citeseer.nj.nec.com/sharkey95how.html
http://spinroot.com/spin/
http://etd.wvu.edu/ETDS/E2147/Stolarik_Brian_Thesis.pdf
http://etd.wvu.edu/templates/showETD.cfm?recnum=1077

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
101

[Widrow 1960] Widrow, B. and M.E. Hoff, Jr. 1960. Adaptive switching circuits. IRE
WESCON Convention Record. 96-104.

[Willshaw 1976] Willshaw, D.J. and C. von der Malsburg. 1976. How patterned neural
connections can be set up by self-organization. In Proceedings of the Royal
Society of London Series B 194:431-445.

[Yu 2002] Yu, X., O. Efe, O. Kaynak. 2002. A general backpropagation algorithm for
feedforward neural network learning. IEEE Transactions on Neural Networks,
13(1):251-254.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
102

APPENDIX A � ACRONYMS
AAC Accurate Automation Corporation

ACRC Advanced Computing Research Centre

ACSR Algebra Communicating Shared Resources

ACTIVE Advanced Control Technology Integrated Vehicles

ARC Ames Research Center

ART Adaptive Resonance Theory

ASE Automated Software Engineering

AVDS Aviator Visual Design Simulator

BAI Barron Associates, Inc.

BDD Binary Decision Diagrams

CADP Cæsar Aldébaran Development Package

CCS Calculus Communicating Systems

CEBP Constrained Error Backpropagation

CMU Carnegie Mellon University

CSP Communicating Sequential Processes

CTL Computation Tree Logic

DCS Dynamic Cell Structure

DDL Domain Description Language

DLC Deterministic Language Construct

DME Diagnostic Modeling Environment

DS Deterministic Scope

ESIC Enhanced Software Instruction Counter

EUCALYPTUS European/Canadian LOTOS Protocol Tool Set

FHA Federal Highway Administration

FHWA Federal Highway Department

GCSR Graphical Communicating Shared Resources

GLA Graphical LOTOS Animator

GLD Graphical LOTOS Designer

GNOCIS Generic NOx Control Intelligent System

GUI Graphical User Interface

HSTS Heuristic Scheduling Testbed System

IEEE Institute of Electrical and Electronics Engineers

IFC Intelligent Flight Control

ISO International Organization for Standardization

ISPP In-Situ Propellant Production

ISR Institute for Scientific Research

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
103

ITC-IRST Center for Technological and Scientific Research

IV&V Independent Verification and Validation

IVVNN independent verification validation neural networks

JPAX Java PathExplorer

JPF Java PathFinder

JPF2 Java PathFinder 2

JVM Java Virtual Machine

KBANN Knowledge-Based Neural Network

KBTAC Knowledge Based Technology Applications Centre

LICS Logics in Computer Science

LOTOS Language Of Temporal Ordering Specification

LRU Locally Responsive Unit

LTL Linear Temporal Logic

MIR Mode Identification Recovery

MLP Multilayer Perceptron

MPL Modeling Programming Language

NDLC Non-Deterministic Language Construct

NDS Non-Deterministic Scope

NN Neural Network

NNP Neural Network Processor

NNT Neural Network Tools

NQC Not Quite C

OLNN Online Learning Neural Network

PACSR Probabilistic ACSR

PARAGON Process-Algebraic Analysis Real-time Applications with Graphics-Oriented Notation

PC Program Counter

PNL Pacific Northwest Laboratory

PROMELA PROcess MEta Language

PS Planner Scheduler

PTNN Pre-Trained Neural Network

PVS Prototype Verification System

RA Remote Agent

RAX Remote Agent eXecutive

RBF Radial Basis Function

REAL Rule-Extraction-As-Learning

RIACS Research Institute Advanced Computer Science

SAT Satisfiability

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
104

SFDIA Sensor Failure, Detection, Identification, and Accommodation

SIC Software Instruction Counter

SMILE SyMbolic Interactive LOTOS Execution

SMV Symbolic Model Verifier

SOM Self-Organizing Map

SPIN Simple Promela Interpreter

SPLICE Specification and Prototyping with LOTOS for an Interactive Customer Environment

STEP Stanford Temporal Prover

STTT Software Tools Technology Transfer

SVC Stanford Validity Checker

TCTL Timed Computation Tree Logic

TOPO Toolset for Product Realization with LOTOS

V&V Verification and Validation

VIA Validity Interval Analysis

VERSA Verification, Execution Rewrite System ACSR

WVU West Virginia University

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
105

APPENDIX B � LIST OF DOCUMENTS
The following documents are included in the ISR V&V of Neural Networks repository
classified as relevant or background information:

Abel, Thomas; R. Knauf; and A. Gonzalez. Generation of a Minimal Set of Test Cases that is
Functionally Equivalent to an Exhaustive Set for Use in Knowledge Based System
Validation. Proc. of 9th International Florida Artificial Intelligence Research Symposium
1996 (FLAIRS-96), Key West, FL, USA, 1996, pp. 280-284.
Alexander, Chris; V. Cortellessa; D. Del Gobbo; A. Mili; and M. Napolitano. Modeling the
Fault Tolerant Capability of a Flight Control System: An Exercise in SCR Specification. 4th
NASA Langley Formal Methods Workshop, Williamsburg, VA. June 13-15, 2000.
Andrews, Robert; and S. Geva. On the Effects of Initializing a Neural Network With Prior
Knowledge. Proceedings of the International Conference on Neural Information Processing
(ICONIP'99), Perth Western Australia. 1999. pp251-256.
Andrews, Robert; and S. Geva. Rule Extraction From Local Cluster Neural Nets. submitted
to Neurocomputing. January 2000.
Andrews, Robert; and S. Geva. Rules and Local Function Networks. in "Proceedings of the
NIPS*96 Rule Extraction From Trained Artificial Neural Networks Workshop", Andrews R.
& Diederich J.(eds). 1996. pp1-12.
Andrews, Robert; and S. Geva. RULEX & CEBP Networks As the Basis for a Rule
Refinement System. in "Hybrid Problems, Hybrid Solutions", John Hallam (Ed). IOS Press.
1995. pp1-12.
Andrews, Robert; J. Diederich; and A. B. Tickle. A Survey and Critique Of Techniques For
Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems 8.
1995. pp373-389.
Ayache, S.; E. Conquet; Ph. Humbert; C. Rodriguez; J. Sifakis; and R. Gerlich. Formal
Methods for the Validation of Fault Tolerance in Autonomous Spacecraft. in Proceedings of
�The Twenty-Sixth Annual International Symposium on Fault-Tolerant Computing (FTCS
'96)�, Sendai, Japan. 1996.
Bastani, Farokh B.; and B. Cukic. A Transformational Approach for Measuring Software
Reliability. The 4th IEEE International Workshop on Evaluation Techniques for Dependable
Systems, San Antonio, TX. 1995.
Bastani, Farokh B.; and B. Cukic. Impact of Program Transformation on Software Reliability
Assessment. IEEE High-Assurance Systems Engineering Workshop, Niagara-on-the-Lake,
Ontario, Canada. 1996.
Bastani, Farokh B.; B. Cukic; Hilford; and A. Jamoussi. Toward Dependable Safety Critical
Software. The 2nd IEEE Workshop on Object-Oriented Real-Time Dependable Systems,
Laguna Beach, CA. 1996.
Bedford, D.F.; J. Austin; and G. Morgan. A Draft Standard for the Certification of Neural
Networks used in Safety Critical Systems. Artifical Neural Networks in Engineering
11/1/1996.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
106

Bedford, D.F.; J. Austin; and G. Morgan. Requirements for a Standard Certifying the use of
Artificial Neural Networks in Safety Critical Applications. 1/1/1996.
Bolt, George. Investigating Fault Tolerance in Artificial Neural Networks. YCS 154,
University of York, UK. 1991.
Brat, Guillaume; and W. Visser. Combining Static Analysis and Model Checking for
Software Analysis. Proceedings of ASE2001. San Diego, CA. 2001.
Brat, Guillaume; K. Havelund; S.J. Park; and W. Visser. Java Pathfinder - Second
Generation of a Java Model Checker. Proceedings of the Workshop on Advances in
Verification. Chicago, Illinois. 2000.
Brown, Steven; and C. Pecheur. Model-Based Verification of Diagnostic Systems.
Proceedings of JANNAF Joint Meeting, Destin, FL. 2002.
Bryant, Randal E.; E. Clarke; D. Garlan; B. Krogh; R. Simmons; and J. Wing. Verification
Tools for Autonomous and Embedded Systems. 4/8/2000.
Burton, Simon; J. Clark; A. Galloway; and J. McDermid. Automated V&V for high integrity
systems, a targeted formal methods approach. In: Proceedings of the LFM 2000, Fifth NASA
Langley Formal Methods Workshop. Williamsburg, VA. 2000
Calise, Anthony J.; S. Lee; and M. Sharma. Development of a Reconfigurable Flight Control
Law for the X-36 Tailless Fighter Aircraft. AIAA Journal of Guidance, Control, and
Dynamics, 24(5):896�902. 2001.
Clancey, Daniel; W. Larson; C. Pecheur; P. Engrand; and C. Goodrich. Autonomous Control
of an in-Situ Propellant Production Plant. In: Proceedings of the Technology 2009 National
Conference, Miami Beach, FL. 1999.
Clarke, Edmund; D. Garlan; B. Krogh; R. Simmons; and J. Wing. Formal Verification of
Autonomous Systems NASA Intelligent Systems Program.. 9/25/2001.
Coenen, Frans; R. Bench-Capon; R. Boswell; J. Dibie-Barthelemy; and B. Eaglestone.
Validation and verification of Knowledge Based Systems: Report on EUROVAV99. The
Knowledge Engineering Review, 15(2):187-196. 2000.
Coit, D.W.; B.T. Jackson; and A.E. Smith. Static Neural Network Process Models:
Considerations and Case Studies. Journal of Production Research, vol. 36, no. 11, 2953-
2967. 1998.
Cortellessa, Vittorio; B. Cukic; A. Mili; D. Del Gobbo; M. Napolitano; M. Shereshevsky;
and H. Sanhu. Certifying Adaptive Flight Control Software. In: Proceedings of the ISACC
2000 Conference, Reston, VA. 2000.
Craven, Mark; and J.W. Shavlik. Learning Symbolic Rules Using Artificial Neural
Networks. In: Proceedings of the 1st International Conference on Intelligent Systems for
Molecular Biology, Bethesda, MD, USA. 1993.
Craven, Mark; and J.W. Shavlik. Rule Extraction: Where Do We Go from Here?. University
of Wisconsin Machine Learning Research Group Working Paper 99-1. 1999.
Craven, Mark; and J.W. Shavlik. Understanding Time-Series Networks: A Case Study in
Rule Extraction. International Journal of Neural Systems 8(4): 373-384. 1997.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
107

Craven, Mark; and J.W. Shavlik. Using Neural Networks for Data Mining. Future
Generation Computer Systems (Special Issue on Data Mining) 13:211-229. 1997.
Craven, Mark; and J.W. Shavlik. Using Sampling and Queries to Extract Rules from Trained
Neural Networks. In: Proceedings of the 11th International Conference on Machine Learning,
pp. 37-45, New Brunswick, NJ. 1994.
Craven, Mark; and J.W. Shavlik. Visualizing Learning and Computation in Artificial Neural
Networks. International Journal on Artificial Intelligence Tools 1(3):399-425. 1992.
Cukic, Bojan; H.H. Ammar; and K. Lateef. Identifying High-Risk Scenarios of Complex
Systems Using Input Domain Partitioning. The 9th International Symposium on Software
Reliability Engineering, Paderborn, Germany. 1998.
Cukic, Bojan; and F.B. Bastani. Attaining High Confidence in Software Reliability
Assessment. High Integrity Software Conference, Albuquerque, NM. 1997.
Cukic, Bojan; and F.B. Bastani. Developing Highly-Reliable Software: The MAP Approach.
The 19th Annual International Conference MIPRO '96, Opatija, Croatia. 1996.
Cukic, Bojan. Accelerated Testing for Software Reliability Assessment. The 21st Annual
International Conference MIPRO '98, Opatija, Croatia. 1998.
Cukic, Bojan. Combining Testing and Correctness Verification in Software Reliability
Assessment. 2nd IEEE High-Assurance Systems Engineering Symposium, Washington, DC.
1997.
Cukic, Bojan. Software Design Principles for Improved Reliability Assessment. The 4th
ISSAT International Conference on Reliability and Quality in Design, Seattle, WA. 1998.
Cukic, Bojan. Transformational Approach to Software Reliability Assessment. Doctoral
Dissertation, Department of Computer Science, University of Houston, Houston, TX. 1997.
Diao, Yizin; and K.M. Passino. Fault Tolerant Stable Adaptive Fuzzy/Neural Control for a
Turbine Engine. IEEE} Trans. on Control Systems Technology, pp. 494-50. 2001.
Dukelow, James S. Jr. Verification and Validation of Neural Networks. Proceedings of the
Neural Network Workshop for the Hanford Community, (Ed.s) Paul E. Keller, (Pacific
Northwest National Laboratory, Richland, WA, USA, 1994), pp. 76-80. 1/1/1993.
Dutertre, Bruno; and V. Stavridou. Formal Requirements Analysis of an Avionics Control
System. IEEE Trans. on SE, 23(5):267--278, 1997.
Dwyer, Mathew B.; J. Hatcliff; R. Joehanes; S. Laubach; C.S. Pasareanu; and H. Zheng.
Tools-supported Program Abstraction for Finite-state Verification. Proceedings of the 23rd
International Conference on Software Engineering, May 2001 1/1/2001.
Dybowski, Richard; and S.J. Roberts. Confidence Intervals and Prediction Intervals for
Feed-Forward Neural Networks. In Dybowski R, Gant V. (eds.) Clinical Applications of
Artificial Neural Networks. Cambridge: Cambridge University Press. 2001. pp 298-326.
Feather, Martin S.; and B. Smith. Automatic Generation of Test Oracles - From Pilot Studies
to Application. In: Proceedings of ASE-99: The 14th IEEE Conference on Automated
Software Engineering, Cocoa Beach, Florida. IEEE CS Press. 1999.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
108

Fravolini, Mario L.; and M. Napolitano. A Neural Network Based Tool for Aircraft SFDIA
Modeling and Simulation. IASTED International Conference on Modeling and Simulation,
Pittsburgh, PA, USA. 2001.
Garcez, A.S. d�Avila; K. Broda; and D.M. Gabbay. Symbolic knowledge extraction from
trained neural networks: A sound approach. Artificial Intelligence, 125(1-2):153-205. 2001.
Gobbo, Diego Del; B. Cukic; M. Napolitano; and S. Easterbrook. Fault Detectability
Analysis of Requirements of Validation of Fault Tolerant Systems. In: Proceedings, Fourth
IEEE International Symposium on High Assurance Systems Engineering (HASE'99),
Washington DC. 1999.
Gross, Anthony R.; K.R. Sridhar; W. Larson; D. Clancy; C. Pecheur; and G.A. Briggs.
Information Technology and Control Needs for In-Situ Resource Utilization. In: Proceedings
of the 50th IAF Congress, Amsterdam. 1999.
Haley, Pam; D. Soloway; and B. Gold. Real-time Adaptive Control Using Neural
Generalized Predictive Control. In: Proceedings of the American Control Conference, San
Diego, CA. 1999.
Havelund, Klaus; M. Lowry; and J. Penix. Formal Analysis of a Space Craft Controller using
SPIN. In: Proceedings of the 4th SPIN Workshop, Paris, France. 1999.
Havelund, Klaus; M. Lowry; S. Park; C. Pecheur; J. Penix; W. Visser; and J.L. White.
Formal Analysis of the Remote Agent Before and After Flight. The Fifth NASA Langley
Formal Methods Workshop, Virginia. 2000.
Havelund, Klaus and G. Rosu. Java PathExplorer � A Runtime Verification Tool. The 6th
International Symposium on AI, Robotics and Automation in Space. 2001. Available from
the WWW at http://citeseer.nj.nec.com/havelund01java.html.
Havelund, Klaus and G. Rosu. Monitoring Java Programs with Java PathExplorer. RIACS
Technical Report 01.19. 2001. Available from the WWW at
http://citeseer.nj.nec.com/havelund01monitoring.html.
Hayhurst, Kelly J.; and C.M. Holloway. Challenges in Software Aspects of Aerospace
Systems. In: Proceedings of the 26th Software Engineering Workshop, Greenbelt, MD. 2001.
Hayhurst, Kelly J.; C.A. Dorsey; J.C. Knight; N.G. Leveson; and G.F. McCormick.
Streamlining Software Aspects of Certification: Report on the SSAC Survey. NASA/TM-
1999-209519. pp. 100. 1999.
Hayhurst, Kelly J.; C.M. Holloway; C.A. Dorsey; J.C. Knight; and N.G. Leveson.
Streamlining Software Aspects of Certification: Technical Team Report on the First Industry
Workshop. NASA/TM-1998-207648. pp. 59. 1998.
Heitmyer, Constance; J. Kirby; and B. Labaw. Tools for Formal Specification, Verification,
and Validation of Requirements. In: Proceedings of the 12th Annual Conference on
Computer Assurance. 1997.
Hinchey, Michael G.; J.L. Rash; and C.A. Rouff. Verification and Validation of Autonomous
Systems. In M. Hinchey, editor, Proceedings of 26th Annual NASA Goddard software
Engineering Workshop. pages 136-144, IEEE Computer Society, 2002.

http://citeseer.nj.nec.com/havelund01monitoring.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
109

Hovakimyan, Naira; F. Nardi; and A.J. Calise. A Novel Error Observer Based Adaptive
Output Feedback Approach for Control of Uncertain Systems. IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, VOL. 47, NO. Y, MONTH 2002.
IEEE Software Engineering Standards Committee. IEEE Standard for Software Verification
and Validation. Inst of Elect & Electronic; ISBN: 0738101966; (February 1986).
Jahanian, Farnam. Run-Time Monitoring of Real-Time Systems. Advances in Real-Time
Systems, Chapter 18. S. Son, Editor, Prentice Hall. 1995. (Out of Print). Paper available at
http://citeseer.nj.nec.com/chodrow95runtime.html.
Jiang, Yuan; Z. Zhou; and Z. Chen. Rule Learning based on Neural Network Ensemble. In:
Proceedings of the International Joint Conference on Neural Networks (IJCNN'02),
Honolulu, HI. Vol.2, pp.1416-1420. 2002.
Johnson, Eric N.; and A.J. Calise. Neural Network Adaptive Control of Systems with Input
Saturation. In: Proceedings of the American Control Conference, Arlington, Virginia. 2001.
Knauf, Rainer and A. J. Gonzalez. A Turing Test Approach to Intelligent System Validation.
Wolfgang Wittig und Gunter Grieser (eds): LIT-97, Proc. 5. Leipziger Informatik-Tage,
Leipzig, 25./26. pp. 71-76. 1997.
Knauf, Rainer; I. Philippow; and A. Gonzalez. Towards an Assessment of an AI Systems
Validity by a Turing Test. In: Douglas D. Dankel (ed): Proc. of 10th International Florida
Artificial Intelligence Research Symposium 1997 (FLAIRS-97), Daytona Beach, FL, USA,
May 11-14, 1997. pp. 397-401, Florida Research Society. 1997.
Kortenkamp, David; R. Simmons; T. Milam; and J.L. Fernandez. A Suite of Tools for
Debugging Distributed Autonomous Systems. Proceedings of the IEEE International
Conference on Robotics and Automation, Washington DC, May 2002.
Krogh, Bruce; and J. Vedelsby. Neural Network Ensembles, Cross Validation, and Active
Learning. In G Tesauro, D S Touretzky, and T K Leen (eds.), 231-238. 1995.
Lawrence, Steve; A. Black; A.C. Tsoi; and C.L. Giles. On the Distribution of Performance
from Multiple Neural-Network Trials. IEEE Transactions on Neural Networks (IEEE TNN),
Vol. 8, No. 6, pp. 1507 - 1517. 1997.
Lee, Dr. Yann-Hang. RTESV&V Report Program Analyzer to Establish Models and
Instrumented Codes. 8/1/2000.
Lee, Dr. Yann-Hang. RTESV&V Report V&V Tool Suite for Real Time Control Systems..
7/7/2000.
Lee, Yann-Hang. An Environment for Test Analysis of Real-Time Software. 1/22/2000.
Leitner, Jesse; A. Calise; and J.V.R. Prasad. Analysis of Adaptive Neural Networks for
Helicopter Flight Controls. In: Proceedings of the AIAA Guidance, Navigation, and Control
Conference, Baltimore, MD. pp. 871-879. 1995.
Lerda, Flavio; and W. Visser. Addressing Dynamic Issues of Program Model Checking. In:
Proceedings of the 8th international SPIN workshop on Model checking of software,
Toronto, Ontario, Canada. p.80-102. 2001.

http://citeseer.nj.nec.com/chodrow95runtime.html

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
110

Liu; T. Menzies; and B. Cukic. Data Sniffing � Monitoring of Machine Learning for Online
Adaptive Systems. 14th IEEE International Conference on Tools with Artificial Intelligence
November 4-6, 2002
Loparo, Kenneth A. Lyapunov Stablility Analysis of Dynamical Systems.7/1/2002.
Lowe, David; and K. Zapart. Point-Wise Confidence Interval Estimation by Neural
Networks: A Comparative Study Based on Automotive Engine Calibration. Neural
Computing & Applications Volume 8 Issue 1 (1999) pp 77-85.
Lowry, Michael; and D. Dvorak. Analytic Verification of Flight Software. In IEEE Intelligent
Systems 13(5): 45-49. 1998.
Lowry, Michael; K. Havelund; and J. Penix. Verification and Validation of AI Systems that
Control Deep-Space Spacecraft. 1997. Available on the WWW at
http://ase.arc.nasa.gov/papers/ISMIS97/ISMIS97.Revised.pdf.
Mackall, Dale; S. Nelson; and J. Schumman. Verification & Validation of Neural Networks
for Aerospace Systems. NASA Ames Research Center. 6/12/2002.
Menzies, Tim; and B. Cukic. Adequacy of Limited Testing for Knowledge Based Systems.
International Journal on Artificial Intelligence Tools 9(1): 153-172. 2000.
Menzies, Tim; and B. Cukic. Average Case Coverage for Validation of AI Systems. AAAI
Stanford Spring Symposium on Model-based Validation of AI Systems. 2001. Available on
the WWW at http://tim.menzies.com/pdf/01validint.pdf.
Menzies, Tim; and B. Cukic. How Many Tests Are Enough. Handbook of Software
Engineering and Knowledge Engineering, Volume II; Editor S.K. Chang; 981-02-4974-8.
2002. Available on the WWW at http://tim.menzies.com/pdf/00ntests.pdf.
Menzies, Tim; and B. Cukic. Intelligent Testing can be Very Lazy. In: Proceedings of the
AAAI '99 workshop on Intelligent Software Engineering, Orlando, Florida. 1999. Available
on the WWW at http://tim.menzies.com/pdf/99waaai.pdf.
Menzies, Tim; and B. Cukic. When to Test Less. IEEE Software, pp. 107-112, volume 17,
number 5. 2000. Available on the WWW at http://tim.menzies.com/pdf/00iesoft.pdf.
Menzies, Tim; and P. Compton. The (Extensive) Implications of Evaluation on the
Development of Knowledge-Based System. Proceedings of the 9th AAAI-Sponsored Banff
Knowledge Acquisition for Knowledge Based Systems 1/1/1995.
Menzies, Tim; and S. Waugh. Lower Bounds on the Size of Test Data Sets. In: Proceedings of
the Australian Joint Conference on Artificial Intelligence, pp. 227-237. 1998.
Menzies, Tim; and Y. Hu. Just Enough Learning (of Association Rules). WVU CSEE tech
report. 2002. Available on the WWW at http://tim.menzies.com/pdf/02tar2.pdf.
Menzies, Tim; B. Cukic; H. Singh; and J. Powell. Testing Nondeterminate Systems. In:
Proceedings of the ISSRE 2000. 2000. Available on the WWW at
http://tim.menzies.com/pdf/00issre.pdf.
Menzies, Tim; S. Easterbrook; B. Nuseibeh; and S. Waugh. Validating-Inconsistent
Requirements Models using Graph-based Abduction.
http://www.cs.toronto.edu/%7Esme/papers/2000/abduction.pdf 1/1/2000.

http://www.informatik.uni-trier.de/~ley/db/journals/ijait/ijait9.html#MenziesC00

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
111

Menzies, Tim; D. Owen; and B. Cukic. Saturation Effects in Testing of Formal Models. In:
Proceedings of the ISSRE 2002. 2002. Available on the WWW at
http://tim.menzies.com/pdf/02sat.pdf.
Menzies, Tim. Verification and Validation and Artificial Intelligence. Foundations 2002,
October 22-23, 2002.
Mitchell, Tom M.; and S.B. Thrun. Learning Analytically and Inductively. Mind Matters: A
Tribute to {A}llen {N}ewell. Lawrence Erlbaum Associates, Inc. 85--110. 1996.
Morgan, G.; J. Austin; and G. Bolt. Safety Critical Neural Networks. IEEE Conference on
Neural Networks, 1995.
Nardi, Flavio; N. Hovakimyan; and A.J. Calise. Decentralized Control of Large-Scale
Systems using Single Hidden Layer Neural Networks. In: Proceedings of the 2001 American
Control Conference. 2001.
NASA ARC; S. Nelson; and C. Pecheur. New V&V Tools for Diagnostic Modeling
Environment(DME). Task 10 TA-5.3.3(WBS 1.4.4.5.3) of the Space Launch Initiative 2nd
Generation RLV TA-5 IVHM Project. 1/25 2001.
NASA ARC; S. Nelson; and C. Pecheur. V&V of Advanced Systems at NASA. Task 10 TA-
5.3.3(WBS 1.4.4.5.3 of the Space Launch Initiative 2nd Generation RLV TA-5 IVHM
Project. 1/25/2002.
NASA ARC; S. Nelson; and C. Pecheur. Survey of NASA V&V Processes/Methods for
Northrop Grumman Corp. NASA ARC TASK NO: 10 TA-5.3.3 (WBS 1.4.4.5.3)
10/24/2001.
Naydich, Dimitri; and J. Nowakowski. Flight Guidance System Validation using SPIN.
NASA Contractor Report NASA/CR-1998-208434. 1998
Omlin, Christian W.; and C.L. Giles. Rule Revision with Recurrent Neural Networks. TKDE
8(1): 183-188. 1996.
Ordonez, Raul; and K.M. Passino. Stable Multi-Input Multi-Output Adaptive Fuzzy/Neural
Control. IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 7, NO. 3, JUNE 1999

Pasareanu, Corina S.; M.B. Dwyer; and W. Visser. Finding Feasible Counter-Examples
When Model Checking Abstracted Java Programs. Lecture Notes in Computer Science. Vol.
2031, pp. 284 --. 2001.
Pecheur, Charles; and A. Cimatti. Formal Verification of Diagnosability via Symbolic Model
Checking. In: Proceedings of the MoChArt 2002 Workshop. Lyon, France. 2002.
Pecheur, Charles; and R. Simmons. From Livingstone to SMV Formal Verification for
Autonomous Spacecrafts. In: Proceedings of the FAABS 2000 Conference. Greenbelt,
Maryland. 2000.
Pecheur, Charles. Advanced Modeling and Verification Techniques Applied to a Cluster File
System. In: proceedings of the ASE'99 Conference. Cocoa Beach, Florida. 1999.
Pecheur, Charles. Specification and Verification of the Co4 Distributed Knowledge System
Using LOTOS. In: Proceedings of the 12th IEEE International Conference on Automated
Software Engineering. Incline Village, Nevada. 1997.

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
112

Pecheur, Charles. Verification and Validation of Autonomy Software at NASA. NASA/TM
2000-209602. 2000.
Pecheur, Charles. [Projects:] Verification and Validation. Automated Software Engineering
Group NASA Ames Research Center Web site. Updated 6/17/2000. Web page available from
WWW at http://ase.arc.nasa.gov/docs/vandv.html.
Pecheur, Charles; W. Visser; and R. Simmons. RIACS Workshop on the Verification and
Validation of Autonomous and Adaptive Systems. Conference report, AI Magazine, Fall
2001. Also available as NASA/TM-2001-210927. 2001.
Pell; Gat; Keesing; Muscettola; and B. Smith. Robust Periodic Planning and Execution for
Autonomous Spacecraft. Proceedings of IJCAI-97. 1997. Available from the WWW at
http://ic.arc.nasa.gov/ic/projects/Executive/papers/ijcai97.ps.
Penix, John; C. Pecheur; and K. Havelund. Using Model Checking to Validate AI Planner
Domain Models. In: Proceedings of the 23rd Annual Software Engineering Workshop.
NASA Goddard. 1998.
Penix, John; W. Visser; E. Engstrom; A. Larson; and N. Weininger. Verification of Time
Partitioning in the DEOS Scheduler Kernel. International Conference on Software
Engineering, pp. 488-497. 2000.
Preece, Alun D. Validation of Knowledge-Based Systems: Current Trends and Issues.
Journal of Communication and Cognition - Artificial Intelligence, 11(4), 381-413, 1994.
Rosenbert, Linds; L. Hyatt; T. Hammer; L. Huffman; and W. Wilson. Testing Metrics for
Requirement Quality. Quality Week Europe '98 Conference, November, 1998, Belguim
11/1/1998.
Sethi, Ishwar K.; and J.H. Yoo. Multivalued Logic Mapping of Neurons in Feedforward
Networks. AAAI-96.
Simmons, Reid; and C. Pecheur. Automating Model Checking for Autonomous Systems. In:
Proceedings of AAAI Spring Symposium on Real-Time Autonomous Systems. Stanford.
2000.
Simmons, Reid; and G. Whelan. Visualization Tools for Validating Software of Autonomous
Spacecraft. In: Proceedings of the Fourth International Symposium on Artificial Intelligence,
Robotics, and Automation for Space (i-SAIRAS). Tokyo, Japan. 1997.
Simmons, Reid; C. Pecheur; and G. Srinivasan. Towards Automatic Verification of
Autonomous Systems. In: Proceedings of the 2000 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2000.
Smith, Ben; W. Miller; J. Dunphy; Y. Tung; P. Nayak; E. Gamble; and M. Clark. Validation
and Verification of the Remote Agent for Spacecraft Autonomy. IEEE Aerospace 1999.
Thrun, Sebastian B. Extracting Provably Correct Rules from Artificial Neural Networks.
Technical Report IAI-TR-93-5, Institute fur Informatics III, Universität Bonn. 1993.
Tickle, Alan B.; R. Andrews; M. Golea; and J. Diederich. The truth is in there: directions
and challenges in extracting rules from trained artificial neural networks. 1/1/1998.
Towell, Geoffrey G.; and Jude W. Shavlik. Extracting Refined Rules from Knowledge-Based
Neural Networks. Machine Learning (in press). 1991.

http://ase.arc.nasa.gov/docs/vandv.html
http://ic.arc.nasa.gov/ic/projects/Executive/papers/ijcai97.ps

IVVNN-LITREV-F002-UNCLASS-111202

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report.
113

Visser, Willem; and H. Baringer. Memory Efficient State Storage in SPIN. In: Proceedings of
SPIN96 Workshop. Rutgers, USA. 1996.
Visser, Willem; and H. Baringer. Practical CTL* Model Checking -- Should SPIN be
Extended?. International Journal on Software Tools for Technology Transfer (STTT).
Volume 2 Number 4. 2000.
Visser, Willem; H. Baringer; D. Fellows; G. Gough; and A. Williams. Efficient CTL* Model
Checking for Analysis of Rainbow Designs. In: Proceedings of CHARME97 Workshop.
Montreal, Canada. 1997.
Visser, Willem; G. Brat; K. Havelund; and S. Park. Model Checking Programs. In:
Proceedings of the 15th International Conference on Automated Software Engineering
(ASE). Grenoble, France. 2000.
Visser, Willem; K. Havelund; and J. Penix. Adding Active Objects to SPIN. In: Proceedings
of SPIN99a Workshop. Trento, Italy. 1999.
Wen, Wu; and J. Callahan. Neuralware Engineering: Develop Verifiable ANN-based
Systems. In Symposium on Intelligent Systems and Robotics, Washington D. C. 1996.
Wen, Wu; and J. Callahan. Verification and Validation of KBS With Neural Network
Components. AAAI 1996.
Wen, Wu; J. Callahan; and M. Napolitano. Towards Developing Verifiable Neural Network
Controller. In: Proceedings of ICTAI'96, pp 75�82. Toulous, France. 1996.
Wen, Wu; J. Callahan; and M. Napolitano. Verifying Stability of Dynamic Soft-Computing
Systems. In: Proceedings of IJCAI Workshop on Validation, Verification and Refinement of
AI Systems and Subsystems. Nagoya, Japan. pp 11-18. 1997.
Williams, Christopher K.I.; and F. Vivarelli. Upper and Lower Bounds on the Learning
Curve for Gaussian Processes. Machine Learning 40(1): 77-102. 2000.
Yang, Bwolan; R. Simmons; D.R. O�Hallaron; and R.E. Bryant. Optimizing Symbolic Model
Checking for Constraint-Rich Models. CAV. 328-340. 1999.
Zhou, Zhi-Hua; Jiang; and S. Chen. Extracting Symbolic Rules from Trained Neural Network
Ensembles. AI Communications, in press. 2002.

	TITLE PAGE
	APPROVAL PAGE
	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Historical Highlights of Neural Network Development
	History of V&V
	Timeline
	Major Contributors

	LITERATURE SURVEY
	A Summary of Projects
	Deep Space Exploration - Remote Agent (RA)
	Intelligent Aircraft
	Intelligent Flight Controls
	Intelligent Vehicle Health Management

	Other Safety-Related Neural Network Projects
	Medical Industry
	Power Industry
	Environmental Monitoring

	Summary of Methods
	Testing
	Traditional NN Testing
	Automated Testing
	Simulation

	Run-Time Monitoring
	Lyapunov Stability Analysis
	Rule Extraction
	Rule Extraction Techniques
	Decompositional
	Pedagogical
	Eclectic

	Cross Validation
	Visualization
	Model Checking

	Summary of Tools
	HyTech
	Java PathExplorer (JPaX)
	Java PathFinder (JPF) and Java PathFinder 2 (JPF2)
	Static Analysis
	Runtime Analysis
	Automated Abstraction
	Usage and Development

	KRONOS
	LOTOS
	MATLAB NN Toolbox
	Murphi – or Mur(
	PARAGON
	PAX
	Planview/Comview
	PVS
	Real-Time Software Testing Tool Suite
	RULEX
	SMV/NuSMV
	SPIN
	STeP
	UPPAAL
	WVU F-15 Simulation

	EVALUATION OF TOOLS
	CONCLUSION
	Method Review
	Tool Review
	Summation

	FUTURE RESEARCH
	Research on Human Factor Analysis Based on Pilot Certification
	Improvements on Existing Processes
	Formal Methods
	Rule Extraction
	Model Checking

	Run-Time Monitoring Methods
	Data Sniffing (WVU)
	Monotonic Learning (WVU)
	Safety Monitors
	Lyapunov Stability (NASA DFRC/NASA ARC/WVU)

	Testing Methods
	Visualization Methods
	Visualization of Learning
	WVU F-15 Flight Simulation

	Tying It All Together

	REFERENCES
	APPENDIX A – ACRONYMS
	APPENDIX B - LIST OF DOCUMENTS

